The quest for understanding solar brightness variation. How can SOLSPEC contribute?

Absolute level

Spectral Variability

IR mystery

ATLAS3
Gerard Thuillier

WHI Tom Woods

IR mystery

ATLAS3
Gerard Thuillier

WHI Tom Woods

The Solar Irradiance Spectrum at Solar Activity Minimum Between Solar Cycles 23 and 24

G. Thuillier • D. Bolsée • G. Schmidtke • T. Foujols • B. Nikutowski • A.I. Shapiro • R. Brunner · M. Weber · C. Erhardt · M. Hersé · D. Gillotay · W. Peetermans ·

W. Decuyper · N. Pereira · M. Haberreiter · H. Mandel · W. Schmutz

Received: 16 May 2013 / Accepted: 6 December 2013 © Springer Science+Business Media Dordrecht 2013

Abstract On 7 February 2008, the SOLAR payload was placed onboard the International Space Station. It is composed of three instruments, two spectrometers and a radiometer. The two spectrometers allow us to cover the 16-2900 nm spectral range. In this article, we first briefly present the instrumentation, its calibration and its performance in orbit. Second, the massumed during the troposition between Color Cueles 22 to 24 et the time

- Jar Activity

Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer-Langley Technique

D. Bolsée · N. Pereira · W. Decuyper · D. Gillotay ·

H. Yu · P. Sperfeld · S. Pape · E. Cuevas · A. Redondas · Y. Hernandéz · M. Weber

Received: 30 April 2013 / Accepted: 2 January 2014 © Springer Science+Business Media Dordrecht 2014

Abstract We describe an instrument dedicated to measuring the top of atmosphere (TOA) solar spectral irradiance (SSI) in the near-infrared (NIR) between 600 nm and 2300 nm at a resolution of 10 nm. Ground-based measurements are performed through atmospheric NIR briefly present uzon acquired and extrapolated using the Bouguer Langlay technique

The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer Onboard the International Space Station

G. Thuillier¹ · J.W. Harder² · A. Shapiro³ · T.N. Woods² · J.-M. Perrin⁴ · M. Snow² · T. Sukhodolov³ · W. Schmutz³

Received: 19 June 2014 / Accepted: 18 May 2015 / Published online: 17 June 2015

© Springer Science+Business Media Dordrecht 2015

Abstract A solar spectrum extending from the extreme ultraviolet to the near-infrared is an important input for solar physics, climate research, and atmospheric physics. Ultraviolet measurements have been conducted since the beginning of the space age, but measurements throughout the contiguous visible and infrared (IR) regions are much more sparse. Ageing

Solar Phys (2015) 290:1601-1605 DOI 10.1007/s11207-015-0707-y

Solar Phys Solar Phys (20 DOI 10.1007

The

by t

the

Comment on the Article by Thuillier et al. "The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer onboard the International Space Station" Invited Review

M. Weber¹

Received: 29 April 2015 / Accepted: 18 May 2015 / Published online: 11 June 2015 © Springer Science+Business Media Dordrecht 2015

Abstract Thuillier et al. (Solar Phys., 2015, DOI:10.1007/s11207-015-0704-1) discuss the apparent discrepancy between the ATLAS-3 composite solar spectral irradiances (SSI) covering the ultraviolet/visible/near-infrared (NIR) spectral region with more recent SSI measurements in the NIR. Recent measurements from IRSPERAD, CAVIAR, SCIAMACHY, SOLSPEC/ISS (the SOLAR2 spectrum from 2008), and unadjusted SIM show that above about 1600 nm, SSI is lower by about 8 % with respect to ATLAS-3. A new correction

Solar Phys (2015) 290:1601–1605 DOI 10.1007/s11207-015-0707-y

Solar Phys Solar Phys (20 DOI 10.1007

The by t

Comment on the Article by Thuillier et al. "The Infrared Solar Spectrum Measured by the SOLSPEC Spectrometer onboard the International Provided Pro

Such a discussion promoted an interest to the absolute measurements of the solar spectrum

Received: 29 April 2015 / Accepted: 18 May 2015 / Published online: 11 June 2015

Springer Science+Business Media Dordrecht 2015

Abstract Thuillier et al. (Solar Phys., 2015, DOI:10.1007/s11207-015-0704-1) discuss the apparent discrepancy between the ATLAS-3 composite solar spectral irradiances (SSI) covsurements in the NIR. Recent measurements from IRSPERAD, CAVIAR, SCIAMACHY, and unadjusted SIM show that above throughout the colors by about 8 % with respect to ATLAS-3. A new correction

5(

HOW DEEP CAN ONE SEE INTO THE SUN?

. MANYAMAM.

THOMAS R. AYRES

Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0391, U.S.A.

(Received 10 February, 1989; in revised form 30 May, 1989)

Abstract. Conventional wisdom dictates that the $1.642 \,\mu m \, H^-$ 'opacity minimum' is the best window to the depths of the solar photosphere. However, the violet continuum near $0.4 \,\mu m$ exhibits a larger intensity response to small thermal perturbations at depth, and thus might offer an even better view of the subsurface roots of granulation cells and magnetic flux tubes.

Spectral Variability

Total Solar Irradiance

spectrally integrated solar radiative flux at one AU from the Sun

from Ermolli et al. (2013)

Relative contribution of the UV, visible, near-IR, and IR ranges to the TSI change over the solar cycle

from Ermolli et al. (2013)

from Ermolli et al. (2013)

Sun Photometer SOHO/VIRGO 402 nm, 500 nm, 862 nm; 1996 -...

SOLSPEC/ISS 170-2900 nm; 2008 - ...

SPM/VIRGO

from Ermolli et al. (2013)

Sun Photometer SOHO/VIRGO 402 nm, 500 nm, 862 nm; 1996 -...

SOLSPEC/ISS 170-2900 nm; 2008 - ... Relative contribution of the UV, visible, near-IR, and IR ranges to the TSI change over the solar cycle

from Ermolli et al. (2013)

Sun Photometer SOHO/VIRGO 402 nm, 500 nm, 862 nm; 1996 -...

Wehrli et al. (2013)

SOLSPEC/ISS 170-2900 nm; 2008 - ... Relative contribution of the UV, visible, near-IR, and IR ranges to the TSI change over the solar cycle

from Ermolli et al. (2013)

Sun Photometer SOHO/VIRGO 402 nm, 500 nm, 862 nm; 1996 -...

SOLSPEC/ISS 170-2900 nm; 2008 - ... Wehrli et al. (2013)

Model5

Origin of solar brightness variability

from Solanki et al. 2013

Origin of solar brightness variability

from Solanki et al. 2013

Sunspot (umbra + penumbra)

Faculae

Network

Quiet Sun

Physics-based models

spectra of the individual components

surface coverages

marriage procedure

SATIRE (Spectral And Total Irradiance REconstructions)

Unruh et al. 1999, 2008
Fligge et al. 2000
Krivova et al. 2003, 2006, 2009a,b, 2011a,b
Wenzler et al. 2004, 2005, 2006, 2009
Solanki & Krivova 2006; Krivova & Solanki
2008; Ball et al. 2014, Yeo et al. 2014

Magnetograms and continuum images

Distribution of features on the solar surface

Semi-empirical model atmospheres

Brightness of features

IRRADIANCE

SATIRE-S vs **PMOD** composite

SATIRE-S vs PMOD composite

replicates over 92% of the observed TSI variability over the entire period of spaceborne observations.

Physics-based models

spectra of the individual components

surface coverages

marriage procedure

Physics-based models

spectra of the individual components

surface coverages

marriage procedure

ACTIVITY CYCLE TIME SCALE

ACTIVITY CYCLE TIME SCALE

ACTIVITY CYCLE TIME SCALE

The increase of the TSI at maximum of the activity cycle compared with minimum is directly attributed to the variability in spectral lines

Calculations of the spectra

temperature and density structure of the atmosphere

from Fluri et al. 1999

Populations + chemical equilibrium

Radiative transfer

3D MHD

statistical equilibrium

SD MHD

AVE STATE OF SALES

FRANCE

FR

Lambda iterations

statistical equilibrium

3D MHD

Lambda iterations

statistical equilibrium

3D MHD semi-empirical 1D models ATLAS9 (SATIRE) statistical LTE equilibrium Ground state Accelerated Lambda spectrum iterations synthesis

3D MHD simulations

statistical equilibrium

NLTE radiative transfer code

3D MHD simulations

statistical equilibrium

NLTE radiative transfer code

spectrum synthesis

THANK YOU!