Non linearity in CCD detection

Intermission on the way to Picard Sodism L1 products

J.-F. Hochedez

1. Successive restorative steps of instrumental correction

- I. From the Level 0 to Level I_{k+1} data products
- 2. The unwanted components in the signal of a pixel
- 3. Put the corrections in sequence!

From the Level 0 to Level 1_{k+1} data products

- Instrumental corrections:
 - Condition the scientific objectives
 - Especially in the fields of metrology/astrometry when accuracy and/or precision prevail
 - Bring instrumental diagnostics
- To convert Level 0 (= formatted & informed TM) into Level 1 products (= corrected for instrumental flaws), we must:
 - 1. Elaborate a correction method
 - 2. Compute its calibration elements
 - E.g. the parameters of a non-linearity function
 - 3. Process the data products provided by the previous correction stage
 - \square The above cycle actually applies from Level 1_k to Level 1_{k+1} , i.e. several times!

What are we talking about?

List of instrumental effects in the Picard Sodism solar space telescope

Additive

- Offset
- Dark signal
 - Hot pixels
- Cosmic ray hits
- Ghost images

Multiplicative

- Optical flatfield
 - incl. vignetting
- Detector flatfield
- Non linearity of the detection

Convolutive

- PSF
 - Scattered light
 - Kinematic blur
 - Optical aberrations (defocus...)
- Persistence / hysteresis
- CCD charge transfer efficiency

Other

Distortion (anamorphosis)

Components in the pixel signal

Put the corrections in the right sequence!

- The corrections ought to apply in "some" order...
- They must proceed from back to front
 - 1. DN or ADU ↓
 - 2. Detected e⁻ →
 - 3. Detected photons →
 - 4. Incident photons →
 - *5. etc.*
- Typically, one cannot address optical effects with data that are still tainted by detection flaws.
 - In principle.
 - Might be OK for the spadework

Preferred sequence

- 1. Offset
- 2. Cosmic ray hits
- 3. Dark signal and hot pixels
- 4. Non linearity
- Detector flatfield
- 6. Persistence
- 7. Ghost
- 8. PSF (aberrations and scattered light)
- 9. Optical flatfield
- 10. Distortion
- 11. ...

Sub-levels L1_{k+1} after each

2. Non Linearity due to shutter kinematics

- 1. Evidencing the problem
- 2. Observational campaigns of exposure time variations
- 3. Modeling the shutter kinematics
 - a. Parameterized modelization
 - b. Inversion of the geometrical configuration

Non linearity seen during exposure time variation campaigns

Chronology of commanded exposure times

Exposure time variation campaign

March 22., 2011 @535D

Let's first assume a fully linear model w.r.t. exposure time:

Signal(
$$pxl = i$$
, $Commanded\ exposure = T_j$) = $\varphi_i T_j + Offset_i$
 φ_i and $Offset_i$ obtained by robust linear regression at each pxl

Flux image φ_i

Offset image

Optical scheme

2.3 Modeling the shutter kinematics

- 1. Exposure time is *non* homogeneous over the field
- 2. Six unknown parameters
- 3. Solution and result

Effect of a not-so-swift electromechanical shutter Most geometrical parameters are known

Much information resides in the Uniblitz/Vincent Associates drawings

6 Unknowns parameters

- Relative centering of CCD vs. shutter
 - $X_0 & Y_0$
- Tilt of the overall shutter system
 - θ_0
- Speed of each blade
 - Reference blade : к
 - Relative speed of the other blade : ζ
- Delay between header exposure time and actual motion
 - τ_0

Only 4 parameters needed to generate a map of extra exposure time

$$X_0, Y_0, \theta_0, \zeta \rightarrow \gamma_i$$

Estimation of the unknown geometrical parameters

Signal(pixel = i, Commanded exposure =
$$T_j$$
) = $\varphi_i \times [T_j + \tau_0 + \kappa \gamma_i] = \varphi_i T_j + Offset_i$
Offset_i/ $\varphi_i = \tau_0 + \kappa \times \gamma_i(X_0, Y_0, \theta_0, \zeta)$

 $(X_0, Y_0, \theta_0, \zeta, \tau_0, \kappa)$ estimated by minimizing χ^2 in the above linear regression

Origin of au_0

 T_C = commanded exposure time T_E = duration of the 100% open configuration τ_0 = $T_E - T_C$

Chi square minimization [1/2]

Chi square minimization [2/2]

LinearModel = $\varphi_i \times ExposureMap(i, j)$, with $ExposureMap(i, j) = T_i + \tau_0 + \kappa \gamma_i$

Extra exposure time due to the shutter

3. Residual non linearity

- 1. Dependency on exposure time correct
- 2. Limits of the linear model
- 3. Model of the CCD non linearity

No more dependency on exposure time (almost)

Observational data / Linear Model Ratio [1/4]

Histogram equalized ok, but should be flat & unstructured

Observational data / Linear Model Ratio [2/4]

Observational data / Linear Model Ratio [3/4]

535nm (535D)

Observational data / Linear Model Ratio [4/4]

393

Conclusion

- Shutter effect
 - Needs to be corrected, as it otherwise adds false signal
 - 3% locally for a 1 sec commanded exposure
 - Especially important around solar disc center
 - Avoidable via CCD or CMOS-APS integration within shutter opening
- CCD non linearity
 - Critical effect below 100 ADU/s
 - Non linearity will affect
 - Scattered light removal
 - Estimation of the bottom part of the radial profile (esp. corner images)
 - Laboratory studies desirable (reality of waves) → EUV
- Do vary exposure in flight