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History 
• First envisaged and studied in 2010  
•  Proposed in June 2012 at the first ESA Call for a Small Mission 
•  Prepared and envisaged in March 2015 for the second ESA Small 

Mission (S2) between ESA and China (Science Academy and 
CNSA) [Not submitted since of CNES lack of support] 

Future 
•  Could be envisaged for a joint opportunity CNES/NASA 

(Heliophysics Explorer Mission of Opportunity? Call next spring) 
between Europeans and Americans partners for a possible flight in 
2021-2022 

•  ESA M5 Call (next spring)… with a larger P/L (microwaves, EUV, 
coronagraph,…)? Pre-proposal concept expected by CNES end of 
October… 
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Large Team Built up for 
ESA S2 Mission (March 2015) 
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UVSQ, Guyancourt, FRANCE 
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David Bolsée, Gaël Cessateur, Didier Fussen, Didier Gillotay, Belgian Institute for Space Aeronomy, BELGIUM 

Pierre Rochus, Yvan Stockman, Centre Spatial de Liège, BELGIUM 
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Werner Schmutz, Julian Gröbner, Margit Haberreiter, Eugene Rozanov, PMOD/WRC, SWITZERLAND 

Robert Wimmer-Schweingruber, CAU, University of Kiel, GERMANY 

Rémi Thiéblemont, Katja Matthes, GEOMAR Helmholtz Center for Ocean Research, Kiel, GERMANY 
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China: Cheng Fang, P.F. Chen, University of Nanjing, Nanjing, China 
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Rationale 
 

!  Determine the origins of the Sun’s activity; understand 
flaring process and CMEs onset 

!  Determine the dynamics and coupling of Earth’s 
atmosphere and its response to solar (in particular UV) and 
terrestrial inputs 

!  Benefit from new activity cycle starting in 2021 

!  Continuous Lyα and Herzberg continuum (200-220 nm) 
imaging at good resolution of energy sources -> structuration/
dissipation/flare/CMEs 

!  High energy flare characterization to understand flaring 
process 

!  Lyman-Alpha and UV Solar Spectral Irradiance 170-400 nm 
inputs in Earth's atmosphere (polar regions) and simultaneous 
monitoring of Earth's radiative budget and ozone 
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 Scientific Objectives 

• 1 –  High Energy Flare Physics 
• 2 –  Flares, activity & structures 

 Lyman-Alpha advantages in observing and 
identifying flare/CMEs precursors; 
 Lyα & 200–220 nm structures 

• 3 –  Ultraviolet Solar Variability (Lyα & 170–400 
nm) and its influence on climate 

High Energy Flare Physics 
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 Model Payload 
High Energy & Particles 

• 1 –  High energy flares: 
HEBS (High Energy Burst 
Spectrometer) hard X-rays to  
gamma-rays 10 keV to 600 MeV  

• 2 –  Particles: 
EPT-HET (Electron Proton 

Telescope & High-Energy Telescope) 
electrons: 20keV to 30 MeV 
protons: 20 keV to 100 MeV 
heavy ions: 10 to 200 MeV/nuc 

• 3 –  Magnetometer 
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 Scientific Objectives 

• 1 –  High Energy Flare Physics 
• 2 –  Flares, activity & structures 

 Lyman-Alpha advantages in observing and 
identifying flare/CMEs precursors; 
 Lyα & 200–220 nm structures 

• 3 –  Ultraviolet Solar Variability (Lyα & 180 –340 
nm) and its influence on climate 

Lyα & 200–220 nm structures 
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Lyα for Early Predictions and Onset 

Observations of Major Flares and CMEs  
Lyman-Alpha, formed in the high chromosphere, at the most 
important chromosphere-corona interface, follows and localizes 
sources of activity /magnetic field structuring; it is the ideal tool for 
the detection and prediction of major flares & CMEs 

• Lyman-Alpha is very 
sensitive to flare (rises 
slightly before GOES, Al or 
Zirconium filters of 
PROBA-2) 

•  It is also 1000 times 
more powerful than Hα for 
instance, visible easily on 
the integrated solar flux 
(LYRA/PROBA-2): excess 
of 0.5 to 0.7% or more 
(M2 Flare)! Huge! 

LYRA/PROBA-2 February 8 2010 M2 
Flare excess (Kretzschmar et al., 2012) 
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Predicting and Monitoring Large Flares 

& CMEs: Ly  better than X-ray"

First objective is to monitor flares in Lyman-Alpha since as 
sensitive than X-ray or XUV. 
 
Second objective, since HI Lyman-Alpha (121.6 nm), much 
alike H-Alpha, possesses high visibility to identify and track 
filaments and emerging bipolar region, is to develop excellent 
flares/CMEs precursor indicators, a space weather direct 
application. 
 
Third objective is, when comparing sensitivity differences 
between Lyman-Alpha and H-Alpha, formed slightly below 
in the chromosphere, to develop better and more robust 
flare/CME indicators (early – several hours before – 
probability of major flares/CMEs) that may even restrict/allow 
to anticipate on the CMEs' direction. 
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Lyα for the Early Predictions of 
Major Flares and CMEs 

•  Filaments and emerging bipolar 
region (the two major flare's 
precursors) are EXTREMELLY well 
seen in H-Alpha and in Lyman-
Alpha allowing their detection, 
monitoring and tracking for an 
earlier prediction of large 
flares happening (the only ones 
leading to the Space Weather 
annoying Interplanetary Coronal 
Mass Ejections, ICMEs, the ones 
towards the Earth) 

•  This requires a good imaging 
telescope at Lyman-Alpha 
what no current satellite program 
has. The He II 304 Å line of SDO 
is not an appropriate substitute 
(much lower contrast)  

High resolution image of the Sun in Lyman-
Alpha taken by the VAULT rocket program of NRL 
and nicely showing prominences and filaments 
(prominences seen in absorption on the disc) 
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Evidence for Twisted Flux Rope/
Filament before a Major Eruption 

Tahar Amari et al., Nature, Oct. 2014 

c) Hα data from Paris-

Meudon Observatory 

showing filament twisted 
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Herzberg Continuum 220 nm 

TRC 3 Rocket Flight 
1982 July 13 
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 Scientific Objectives 

• 1 –  High Energy Flare Physics 
• 2 –  Flares, activity & structures 

 Lyman-Alpha advantages in observing and 
identifying flare/CMEs precursors; 
 Lyα & 200–220 nm structures 

• 3 –  Ultraviolet Solar Variability (Lyα & 170–400 
nm) and its influence on climate 
Ultraviolet Solar Variability (Lyα & 170–400 
nm) and its influence on climate 
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Variability influence is in the UV! 

 
Solar spectrum 
  

 

Absorption 

altitude 

 

Relative 
variability 

 

ABSOLUTE 
VARIABILITY 

over solar cycle 

Ermolli, et al. (2013) 

64% from UV! 
34% from visible 

> to 1% in UV 
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Spectral Solar Irradiance (SSI): 
SMax vs. SMin 

Very small variations in the visible (0.1%) or IR, 
but big changes in the MUV & FUV (5 to 60%) 
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Solar Variability (Activity Sources) Drives 
Spectral Irradiance Variations 
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Influences of Solar Variability on Climate: 
the “Top-down” mechanism 

Hadley & 
Walker cell 
Hadley & 

Walker cell
0 km- 

10 km- 

50 km- 

80 km- 

Thermosphere 

Mesosphere 

Troposphere 

Ocean 

Stratosphere 
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„Bottom-up“  „Top-down“  

Gray, et al. (2010)  
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What do we need to capture the solar signal? 

•  Sufficiently high resolution of the 
radiative scheme in the UV range 
(Nissen et al., 2007, Foster et al., 2011) 

•  Interactive ozone chemistry (or a 
good stratospheric ozone 
parameterization) 

•  Reduce SSI uncertainty 

Increasing evidences that solar variability influences the regional climate 
decadal variability through stratospheric pathway 
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!  next step: proper input for climate modelling, CCMI, CMIP6 (new 
SolarMIP initiative, K. Matthes, B. Funke), etc. 
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 SUITS Model Payload 
Space Weather, FUV, MUV & Climate  

1 –  FUV imaging Lyα & 200-220 nm: 
SUAVE (Solar Ultraviolet 
Advanced Variability Experiment) 

2 –  Solar Spectral Irradiance 170-340 nm 
(Atm. modeling – res. ~0.65 nm): 
SOLSIM (SOLar Spectral Irradiance 
Monitor) 

3 –  Solar radiometers at Lyα,"
Herzberg 200-220 nm, CN, MgII, 
340-400 nm by ∆20nm: 
SUPR (Solar Ultraviolet Passband 
Radiometer) 

4 –  ERBO (Earth Radiative Budget & Ozone)  
5 –  Other Space Weather instrumentation 
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SOLSIM (SOLar Spectral Irradiance Monitor)

Weight < 8 kg 

Wavelength Range 170-340 nm 

Spectral Resolution  ~0.65 nm 

A UV spectrometer (in the ozone production bands) with a reasonable spectral 
resolution is essential for the chemistry modeling of the Earth atmosphere 

Experience at LATMOS and IASB (SOLSPEC experiment) 

Expertise also of LPC2E Orléans 

Design along SOLSPEC (UV channel only: 2 gratings)  
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Gratings 

Deviation 
Mirrors 

Entrance 
Slit 

Exit Slit 

Intermediate 
Slit 

Etendue 
Diaphragm 
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Top View 

Side View 

250 mm 

200 mm 

50 mm 

50 mm 

15 deg 

80 mm 

Z 

Y 

Z X 
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3 Slits 
•  Entrance Slit : 4 mm × 0.2 mm 

•  Intermediate Slit : 4.2 mm × 0.21 mm 
•  Exit Slit : 4.4 mm × 0.3 mm 

 
 

Diaphragm 

•  F/5 beam 
•  Diameter : 16 mm 

•  Position : 80 mm form Entrance Slit 

 
 

2 Deviation Mirrors M1 & M2 
•  Flat Mirrors 

•  90 degrees deviation 

•  Dimension : 20 mm × 28 mm 
•  Position M1 : 200 mm from Grating G1 

•  Position M2 : 50 mm from Intermediate Slit 
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2 Gratings G1 & G2 
•  Strictly identical gratings 

•  Toroidal holographic gratings 
•  2000 gr/mm 

•  Curvatures : 255.676 mm & 245.403 mm 
•  Position G1 : 250 mm from Entrance Slit 

•  Position G2 : 200 mm from Deviation Mirror M2 

•  Dimensions : (X) 62 mm × (Y) 76 mm 
 

Holographic parameters 

•  Construction wavelength = 488 nm 
•  Construction Points Coordinates (relative to Grating reference frame) : 

 X1 = -30.417 mm 
 Z1 = +274.971 mm 

 X2 = +324.100 mm 

 Z2 = +187.095 mm 
 

Beam incidence angles vs wavelength 
•  λ = 170 nm ⇒ θ = 2.379 deg 

•  λ = 340 nm ⇒ θ = 12.566 deg 

 

170 nm 340 nm 
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Design Heritage 

SOLSIM will use the same D2 lamps (left) than 
the SOLAR/SOLSPEC experiment, and also with 
relay mirrors (right). Disposition will be slightly 
different (lamps aligned) in new set-up  
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Preliminary Mechanical 
Implementation 

D2 lamps 

PM and alim 

Gratings 

Entrance door 
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Preliminary Mechanical 
Implementation on SUITS 

Vertical accommodation (entrance on top) (
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SUPR Filter Radiometers FUV, MUV & 
UV: "extending LYRA" 

Absolute variability is 
measured at Lyman-Alpha, 
Herzberg continuum and 
CN bandhead; we 
implement 20 channels  
(5 heads) with large 
redundancy: 
•  5 at Lyman Alpha 121.6 

nm (3 at different rates) 
•  5 at Herzberg continuum 

200–220 nm 
•  CN bandhead 

385–390 nm; Mg II; 
340-400 nm by 20 nm 

 

 The 121.6 and 200–220 nm 
channels support imaging 
modes of SUAVE. 

Mass < 5.7 kg; 0.16 Gbit/day 

 

5 heads of reduced length compared to LYRA 
(see below) 

LYRA on PROBA-2 
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SUAVE (Solar Ultraviolet Advanced Variability Experiment) 
FUV Imaging Telescope (evolution & optimization of SODISM): 

no window, SiC mirrors & new "thermal" door and radiators 

New design thermally optimized of the SUAVE telescope (left) 
compared to the SODISM/PICARD one (right)  



L. Damé, A. Hauchecorne & the SUITS Team — Solar Metrology II, Uccle, September 21, 2015 

New SiC Mirrors: FUV duty cycle 

Unique properties: 
•  conducting 

•  homogeneous 

•  heat evacuation 

•  no coating (no 

degradation) 

•  40% R in UV 

•  20% R in visible 

Thermal 
drain 
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M1 in SiC: no coatings 

R&T CNES 2014-16: realization of a representative optical and thermal 
breadboard of SUAVE SiC mirrors and supports (primary and secondary)  
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ERBO (Earth Radiative Budget & Ozone) 

ERBO is two-fold: 

•  SERB-OS reduced 
to 6 wavelengths:
273, 283, 292, 302, 
312, 331 nm 

•  SERB-ER using 
SIMBA (Sun-Earth 
IMBAlance radio-
meter) 0.1-100 µm 
(ESA Nanosat 
demonstration 
launch in 2016) 

 
2U or 3U instrument 
NADIR pointed (2 kg; 
2 W maximum) 

Artist view of the SIMBA/ESA nanosatellite soon to 
be launched (2016)  

To evidence the direct link between the solar UV variability and the 
Earth consequences 
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Instruments’ Characteristics 

Instrument Mass 
(kg) 

Power 
(W) 

Dimensions 
(L W H, mm) 

Telemetry 
(Gbits/day) 

SUAVE 
Electronics Box 

20 
10 

26 
750 x 308 x 300 
223 x 306 x 304 

3 

HEBS 14 16 310 x 170 x 230 2 

SOLSIM 8 8 450 x 140 x 250 0.1 

SUPR 5.7 6 315 x 350 x 92.5  0.16 

EPT-HET 2 5 130 x 170 x 140 kbps 

ERBO 2 2 100 x 100 x 200 kbps 

Magnetometer 1 1.5 (Electronics box?) kbps 

TOTAL 62.7 64.5 ~750 x 760 x 305 < 5.5 
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A simple orbit choice for 
thermal stability  

"  Sun synchronous orbit 
"  Ascending node: 18h00 
"  Altitude: > 725 km 

"  inclination:98.29° 
"  Eccentricity: 1.04x10-3 

"  Argument of periapsis: 
90° 

 

Orbit with "almost" permanent Sun viewing (much 
alike PICARD but 18h-06h): 
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New PROBA Platform from QinetiQ 

•  ITAR Free 
•  Deorbiting compatible 
•  < 200 kg 
•  694 x 946 mm top plate 

RTU 

Battery  Reaction wheels 

Propulsion Tank 

ADPMS 

X-band 

Transmitter 

MagnetoTorquer 

  

Harness Volume 

S-band transmitter 
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SUITS/SWUSV PROBA Accommodation 

•  SUAVE (Solar Ultraviolet Advanced 
Variability Experiment), Lyman-Alpha and 

200-220 nm Herzberg continuum imaging 
with 3 redundant set of filters to preserve 

long-term sensitivity 

•  SOLSIM (SOLar Spectral Irradiance 

Monitor) 170-340 nm, spectral resolution 

0.65 nm 

•  HEBS (High Energy Burst Spectrometer) 

hard X-rays & gamma-rays from 10 keV 600 

MeV 

•  SUPR (Solar Ultraviolet Passband 

Radiometers) based on PREMOS & LYRA 
with 20 UV filter radiometers for Lyman-

Alpha, Herzberg, CN bandhead (385-390 nm) 

and UV from 180 to 340 nm by 20 nm 
bandpasses 
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SUITS Payload Accommodation 

SUITS spacecraft payload panel (3D view and top view)  

In stowed position, the SUITS/SWUSV (accounting antennae and 
star tracker) is 1183 (L) x 968 (W) x 1273 (H) mm3  
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Conclusion: Small Mission Readiness 

•  Altogether, the SUITS P/L has: 
–  a very complete science case with 4 unique assets 

complementing (not addressed by) larger missions: 
•  Flare physics at high energy and in Lyman-Alpha 

•  Prediction and detection of majors eruptions and CMEs 

•  (F)UV spectral measurements to determine local stratospheric 
influence mechanisms on climate 

•  Simultaneous radiative budget with 1% in differential  

–  a novel, innovating and yet very mature P/L with TRL 6 to 9 
based on optimized instruments of PICARD, PROBA-2 & 
SOLAR/ISS, allowing development on 3-4 years (2021-22 
launch compatible) 

–  a sound mission profile since of recurrent use of the ESA 
PROBA platform, 5.5 Gbits/day of telemetry allowance, and 
a piggy-back low cost VEGA or else (LM-2C or D launch…) 

•  Suited for a Small-size (or more?) mission 
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Thank you!! 

 Lyman-Alpha filtregram obtained in 1979 during the first rocket flight of the 
Transition Region Camera (TRC) and yet the best resolution (1 arcsec) full disc 

Lyman-Alpha image of the Sun. SUAVE/SUITS will reach the same resolution. 
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SUAVE New Design 
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Model Payload 

Size 310 x 170 x 230 (mm) 

Weight 14 kg (2 heads) 

Power 16 W (2 heads) 

Energy Range 10keV - 600MeV 

Energy Resolution 3%@662keV 

Temporal Resolution 1s (quiescent), 32ms (flare-mode) 

High Energy Burst Spectrometer (HEBS) 

3’’ x 3’’ 
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High Energy Burst Spectrometers (HEBS) 
[Inheritated from SMESE CNES/CNSA Phase A+ Study] 

•  Evaluate the electron to ion ratio and its time 
evolution during a Flare 

•  Provide estimates of the input of energy by particle 
beams at the top of the chromosphere 

•  2 observing instruments: 
–  hard X-rays from 10 keV to 500 keV 
–  gamma-rays from 300 keV to 600 MeV (new)  

•  HEBS will provide the first systematic 
measurements of the photon spectrum from a 
few tens of keV to a few hundreds of MeV  

•  HEBS has carried a Phase A+ study in the 
framework of the CNES/CNSA microsatellite 
SMESE that confirmed feasibility and 
readiness. Instrument is to be realized by 
Purple Mountain Observatory and Nanjing 
University, China 
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Electrons, Protons and Ions Detectors 

Electron-Proton and High-Energy Telescopes ( ) 

Mass 2.5 kg 

Power 5 W 

Energy Range Electrons: 20 keV – 30 MeV 
Protons: 20 keV – 100 MeV 
Heavy ions: ~10 MeV/nuc – ~200 MeV/nuc (species 
dependent) 

Time 
Resolution 

10s (species dependent) 

Heritage from 
STEREO/SEPT 

& MSL/RAD 
 

(EPT-HET) 


