SODISM Product levels philosophy and Instrumental corrections

J.-F. Hochedez for the In-flight calibration group (GEVP)

Presentation outline

- 1. N0, N1, N2 products
- 2. Instrumental corrections
- 3. N1 sub levels
- 4. From Flight calibration to CMSP processing
- 5. Corrections status

NO, N1, N2, etc.

1 – PRODUCT LEVELS PHILOSOPHY

Level 0 "N0"

- N0 product = FITS image
 - Raw (only reformatted from TM)
 - Header = all relevant information available at NO creation
 - HK info (e.g. T° CCD)
 - CMSP info (e.g. version #)
 - CCC info (e.g. PICARD longitude)
 - NOP: automatically computed index in view of performance monitoring
 - Future plans: figures too
- N0 products are sorted into thematic directories
 - e.g. MDO/RS/, MNM/HL/, etc.
- A database gathers NO header information
 - Complex SQL query ☺
- N0 production = full success ©

Level 1 « N1 »

- N1 product = FITS image
 - Instrumental effects addressed at level 1 (and only at level 1)
 - N1 image = corrected N0 images
 - Directly into N1 image if univocal correction estimation 'N1X'
 - Otherwise, 'N1Z' auxiliary file available for ulterior optional correction (e.g. PSF)
 - Required correction precisions depend on exact application
 - N1 header
 - Propagation N0 info
 - + Information necessary to N2 production (e.g. R_sol) Can be crucial to subsequent exploitation!
- N1 directory organization: idem N0
- N1 database
 - Should be a posteriori supplemented with analysis outcomes

Level 2 and higher

- N2 = astrophysical information
 - N2 data computed from N1 products
- Higher levels (N3, N4) could be defined
 - E.g. image files (PNG) and movie files to facilitate quick and ergonomical exploitation of PICARD archive
- N2-3-4 beyond the scope of the present talk

2 – THE REQUIRED CORRECTIONS

The additive signal in a SODISM pixel

Required corrections sorted per type

Subtraction

- Offset
- Dark current
 - Hot pixels
- Persistence
- Ghosts
- Cosmic ray hits

Division

Flatfield

Deconvolution

- PSF
 - Scattered light
 - Kinematic blur
 - Aberrations, defocus
- CCD CTE

Anamorphose

- Distorsion
 - Incl 'scale factor'

N1A, N1B, N1C & N1D

3 - N1 SUB-LEVELS

N1 sublevel definition

Réf.	Title	N1 A @ CMSP	N1 B « Best effort »	N1 C « Confirmed »	N1 D « Definitive »
WP-1a	Offset	Yes	Yes		
WP-1b	Dark current	Preliminary	Target		
WP-1c	Persistence	No	If possible	Target	
WP-1d	CRH	No	Yes		
WP-2	CCD CTE	No	No	If possible	Yes
WP-3	Flatfield	Preliminary	Target		
WP-4	Point Spread Function — PSF	No	No	Target	
WP-5	Ghosts	No	Crescent ghost	Annular ghost	
WP-6	Distortion	No	No	Target	Yes
WP-7	Scale factor	No	No	If possible	Target
WP-8	QE & radiometric corrections	Preliminary	No	No	Target

Flight operations, algorithm development, validation, coding, NRT and a posteriori processings

4 – FROM CALIBRATION TO PRODUCTS

Process leading to an N1 product

- 1. Special or routine flight operation and data analysis
- 2. Algorithm development
- 3. Algorithm validation
- 4. Coding
- 5. Code verification
- 6. Code integration at CMS-P
- 7. Calibration matrix production
- 8. Processing or reprocessing
- 9. N1 & N1Z product control

Planning

- N1A available now
- N1B sub-level
 - Offering improved dark current and flatfield corrections
 - Correcting for the crescent ghost
 Should be available by the summer 2012
- N1C sub-level
 - Correcting for the PSF
 - Correcting for the persistence
 Should be available by the fall 2012

Offset, dark signal, cosmic ray hits, ghosts, flatfield, persistence, PSF

5 – CORRECTIONS STATUS

Offset

Time evolution of the left offset (measured onboard by averaging underscans)

Power spectral density of the offset time series

20120410 Picard workshop

Data products - JFH

16

SODISM dark current

- Model produces daily pairs of ZI & ZM dark images
- Based on an analysis of the dark signal time series of every pixels
- Extracting the steps that are generated by the occurrence of a new hot pixel either in ZI or ZM

$$CO^{ijt} = O^t + G(T^t Y^{ijt} + \tau \psi^{ijt})$$

Cosmic ray hits correction

- Algorithm available
- based on local regularity
 - Hölder type criterion
- Issue related to the lossy LGV compression:
 - CRH eat up the TM budget, esp. for long exposure times

Event – Areola – Circlet

Crescent ghost

Crown ghost

SODISM 535nm
Parameterized disc subtracted and contrast boosted

Flatfields

1 estimation concept

- Moving a presumably still image with respect to the instrument
- Various components!
 - CCD flatfields
 - Filter flatfields
- Various spatial scales!!

• 3 algorithms

- Kuhn et al 1991
- Toussaint et al 2003
- Hochedez et al 2012 (in prep)

Many datasets

- offpoints via piezos of the M1 mirror
- Platform Z-axis rotation (MDO)
- Solar rotation

- Flatfields evolve but little & slowly
- Use of the diverging lens TBD

Persistence

- An hysteresis is observed in dark signal images
 - ~ 0.2 ADU/pxl/sec

 Another persistence has been noticed in illuminated images

Of different origin

Under investigation

20120410 Picard workshop

Data products - JFH

PSF

The PSF accounts for

- diffraction
- Kinematic blurring
- Scattered light (wings)
- Defocus and other aberrations

Without PSF deconvolution

After PSF deconvolution

S. Ferron

Avancement N1B & N1C

- The PSF is unknown
 - non axisymetric
 - non shift-invariant
 - Evolutive
- We have no choice but implement a "blind deconvolution" supported by instrumental priors
- Currently some success using a parametrical PSF made of two Gaussians:

SODISM 2012-01-30 CoDir

Four tracks to estimate the PSF

1. Eclipse exploitation

- Sharp lunar limb ©
- Lunar limb can reach the center of the FOV ©
- − 1D degeneracy ⊗
- 2 4 eclipses per year ☺
- Pointing off ☺
 - → Non representative

2. Solar limb inversion

- Radial profile not well known
- − 1D degeneracy ⊗
- Continuous monitoring ©

3. Stellar observation

- Direct PSF measurement if bright star ©
- Unrepresentative thermal configuration ☺
 - Thermal model needed to bridge

4. Optical modelization

- Match model and observations
- To be articulated with other approaches!

Other corrections

- CCD charge transfer efficiency
- Optical distorsion
- Signal at T_exp=0 →

Conclusions

- Elaborating corrections takes:
 - Time and effort to understand the data and the instrument
 - Special measurement campaigns
- Precision will improve in cycles
 - Best at proximity of special observation
 - → Setup flight operations accordingly
- Correction requirements depend on science goal