Secondary scientific objectives for SODISM

J.-F. Hochedez
F. Auchère, T. Dudok de Wit, M. Kretzschmar, M. Haberreiter, E. Quémerais, T. Roudier
Introduction

• SODISM primarily designed for geometric and radiometric metrology at the solar limb
 – Most telemetry, shutter operations, calibration analysis devoted to primary objectives:
 • limb metrology
 • disc & limb helioseismology

• Yet, SODISM is a general purpose solar NUV-VIS telescope producing
 – Synoptic still images (20 per day in all channels)
 – image sequences displaying --or not-- solar events (a few special campaigns)

• Hence, secondary objectives (non limb, non oscillatory), of 2 types:
 – Investigations of individual features
 • together with non-SODISM instruments
 – Statistical investigations
 • Spatial dependencies: center-to-limb, latitudinal, North-South...
 • Temporal dependencies: Schwabe activity cycle, intermittency, other cycles...

+ Some non-strictly-solar targets of opportunity arise
 – Occultations by the Earth atmosphere during the “eclipse season” (winter)
 – Venus transit in June 2012 + (Mercury transit in May 2016 and Nov. 2019…)
 – Solar eclipses by the Moon (2-3 per year)
 – Stellar observations
Original SODISM science fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Solar limb metrology (Sci.field.1)** | - Radial profile of the limb
- Angular profile of the solar disc (asphericity and higher moments)
- Temporal evolution of the above |
| **Helioseismology (Sci.fld.2)** | - Helio-seismic diameter
- Solar intensity oscillations, and especially g-modes |
| **Solar spectral irradiance (Sci.fld.3)** | - Contribution to the reconstruction of the SSI (solar spectral irradiance) |
| **Other solar physics studies (Sci.fld.4)** | - Surface motions and their evolution
- Study of magnetic activity features
- YOUR IDEAS HERE! (Serendipity) |
| **Solar-terrestrial relationships & aeronomy (Sci.fld.5)** | - Space Weather
- Studies of the Earth atmosphere via occultations, albedo studies, etc.
- Contribution to understanding the Sun-Earth connection and climate |
Secondary objectives enabled by SODISM data
discussed in this talk

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
</table>
| Solar limb metrology (Sci.field.1) | • Radial profile of the limb
• Angular profile of the solar disc (asphericity and higher moments)
• Temporal evolution of the above |
| Helioseismology (Sci.fld.2) | • Helio-seismic diameter
• Solar intensity oscillations, and especially g-modes |
| Solar spectral irradiance (Sci.fld.3) | • Contribution to the reconstruction of the SSI (solar spectral irradiance) |
| Other solar physics studies (Sci.fld.4) | • Surface motions and their evolution
• Study of magnetic activity features
• YOUR IDEAS HERE! (Serendipity) |
| Solar-terrestrial relationships & aeronomy (Sci.fld.5) | • Space Weather
• Studies of the Earth atmosphere via occultations, albedo studies, etc.
• Contribution to understanding the Sun-Earth connection and climate |
The astrophysical content of secondary SODISM observations

1. Content of still images
 a. The “featureless” non-magnetized photosphere
 • Its center-to-limb variation, latitudinal dependence, evolution, etc.
 b. Photospheric objects
 • Sunspots, faculae
 c. Chromospheric objects
 • Chromospheric network, plages

2. Content of image sequences
 a. Eventless
 • Torsional oscillations, meridional circulation, supergranular pattern
 b. Eventful
 • Solar: White-light flares, Moreton waves, eruption signatures, etc.
 • Non solar: eclipses by the moon, Earth occultations
A meek classification
The 5 dimensions of SODISM data analysis

- Studied dependences
 - Temporal (scales)
 - Spatial (scales)
 - Spectral

- Method
 - Case study
 - Statistics

- Measurement
 - Morphology
 - Motion
 - Radiometry

- SODISM science investigations

- SODISM channel
 - Photospheric
 - Chromospheric

- Primary target
 - Eventless region
 - Solar object
 - Non solar event
Intensity as a function of latitude

GI suggestions #1

• Radiative North-South asymmetry of the NUV-NIR sun
 • How uniform can a solar-like stellar disk be?
 ➔ Exoplanets research
 • Is magnetism the sole source of irradiance variation?
 • North-South asymmetry
 – In continuum and Fraunhofer lines from 313.4 nm to 4 688 nm
 – Non magnetic photosphere (solar minimum conditions, 2007)
 – 0.05% in the IR
 – 1% in the violet and UV
 – 15% in photospheric and chromospheric line cores
 – Faculae = probable source for the measured asymmetries

• Latitudinal variation of the photospheric intensity
 • Baroclinicity expected for models to match differential rotation
 – Poles and equator regions few K warmer than mid-latitudes
 • Contrasts in the red [•] and in the blue [○] ➔
 – Non magnetic photosphere (outside faculae)
 – inside 0.3 < µ < 0.45
 • Contradicted by Livingston, Galayda, Milkey (2011)

• NB: benefit of eclipses
Evolution of the supergranular pattern
GI suggestions #2

- **Meunier, Roudier, Rieutord, AA (2008)**
 “Supergranules over the solar cycle”
 “Comparisons of supergranules characteristics during the Solar Minima of cycles 22-23 and 23-24”

- Supergranules observed by T. Roudier with SODISM
 - 535nm, 3min cadence
 - LCT technique
 - Cf. J.-M. Malherbe’s talk

Fig. SODISM 535nm divergence field T. Roudier, April 2012
Chromospheric investigations
GI suggestions #3

• 215 nm
 – Uniqueness of such imaging observations
 – “terra incognita”
 – 1 lossless image per day
 – Synergies with PREMOS

• 393 nm
 – 11 (lossy) images per day!
 – Modeling Ca II K emission (<500km?)
 – Proxy (tbc) for the horizontal magnetic field away from disc center

 – ΔD ~ 2 arcsec in H-alpha
 – ΔD ~ 10 arcsec in He II
 – ΔD ~ 10 mas in the photospheric continuum
 – Dynamical vs. magnetic pressure interplay
 – ΔD at 215nm and 393nm ??
 – Cycle evolution?

SODISM 215nm
2011-04-01

393 emission height, from Ermolli et al 2012

Hell prolateness, from Auchère et al 1998
SSI reconstruction
GL suggestions #4

• Segmentation based on intensity in 1 channel
 – use several, segment on morphology!
• Assign atmosphere (and spectrum) to segmented region
 – SRPM: Fontenla et al
 – SolMod3D: Haberreiter et al (COSI & SRPM heritage)
White Light Flares
GI suggestions #5

- Eruption, as seen by PREMOS 210 nm →
 - SODISM could observe such events
- Veselovsky and Koutchmy (2009)
 Scientific requirements for future spatially resolved white-light and broad-band high-cadence observations of the Sun
- Martínez Oliveros et al (2011)
 Imaging Spectroscopy of a White-Light Solar Flare
 Eruption seen by SDO - HMI
Observation of the Sun occulted by the Earth atmosphere
GI suggestions #6
GI suggestions #7: Venus transit of June 2012
Classification of expected hurdles

Measurement type
- Morphological & motion
 - on disc
- Radiometric
- Solar features and events
- Non magnetic photosphere

Primary target
- Photospheric
- Chromospheric
- Temporal short term or Spatial small scale
- Temporal long term (months)
- Spatial large scales (CLV, North-South, etc.)
- Spectral

Channels
- PSF deconvolution, flatfield (small scales)
- Persistence, flatfield (all scales), QE, camera gain, ghosts, dark current, cosmic ray hits
- Chance of capturing sought event, max cadence = 1 minute
- Magnetic activity filtering
- OK
- Sensitivity loss
- OK
- Calibration evolution (PSF, flatfield, dark current, etc.)
- Flatfield (large scale)
- Relative calibration

Color code:
- Not so bad, promising, or better than feared
- Difficult

Picard Workshop - 2012-04-10
Secondary Sci. Obj. - JFH et al
SODISM aptitudes and frailties

• **Weaknesses**
 – Unknown PSF
 – Unexplained persistence
 – Quasi all full disc images compressed lossily, what’s more at x16 rate
 – Few sequences of full frame images, none yet acquired at the max cadence of 1 minute
 – Sparse exploration of the space of image acquisition parameters
 • E.g. fixed exposure time
 – Ghost and scattered light
 • Difficult off-limb observations

• **Plusses**
 – 24h/7d operations
 – Potentially frequent Z-axis rotation → large scale flatfield precision (if full frames)
 – Uniqueness of the 215 nm channel
 – Plurality and narrowness of the passbands
 – Stability of the telescope body
 – Relatively frequent solar eclipse observations
 – Earth occulted observations in winter
 – No technical impossibility for NRT (near real time) data delivery, but presently unavailable
Expected collaborations

– PREMOS filter radiometers
– Solar full-disc imaging monitors
 • PSPT, SOLIS, and other ground-based telescopes
 • SDO-HMI, SDO-AIA
– SOVAP and PREMOS TSI radiometers
– Others (SORCE - SIM, PROBA2 - LYRA, etc.)

– Join internationally coordinated observations

– Guest investigators!