Secondary scientific objectives for SODISM

J.-F. Hochedez

F. Auchère, T. Dudok de Wit, M. Kretzschmar, M. Haberreiter, E. Quémerais, T. Roudier

Introduction

- SODISM primarily designed for geometric and radiometric metrology at the solar limb
 - Most telemetry, shutter operations, calibration analysis devoted to primary objectives:
 - limb metrology
 - disc & limb helioseismology
- Yet, SODISM is a general purpose solar NUV-VIS telescope producing
 - Synoptic still images (20 per day in all channels)
 - image sequences displaying --or not-- solar events (a few special campaigns)
- Hence, *secondary objectives* (non limb, non oscillatory), of 2 types:
 - Investigations of individual features
 - together with non-SODISM instruments
 - Statistical investigations
 - Spatial dependencies: center-to-limb, latitudinal, North-South...
 - Temporal dependencies: Schwabe activity cycle, intermittency, other cycles...
- + Some non-strictly-solar targets of opportunity arise
 - Occultations by the Earth atmosphere during the "eclipse season" (winter)
 - Venus transit in June 2012 + (Mercury transit in May 2016 and Nov. 2019...)
 - Solar eclipses by the Moon (2-3 per year)
 - Stellar observations

Original SODISM science fields

Solar limb metrology (Sci.field.1)

- Radial profile of the limb
- Angular profile of the solar disc (asphericity and higher moments)
- Temporal evolution of the above

Helioseismology (Sci.fld.2)

- Helio-seismic diameter
- Solar intensity oscillations, and especially g-modes

Solar spectral irradiance (Sci.fld.3)

• Contribution to the reconstruction of the SSI (solar spectral irradiance)

Other solar physics studies (Sci.fld.4)

- Surface motions and their evolution
- Study of magnetic activity features
- YOUR IDEAS HERE! (Serendipity)

Solar-terrestrial relationships & aeronomy (Sci.fld.5)

- Space Weather
- Studies of the Earth atmosphere via occultations, albedo studies, etc.
- Contribution to understanding the Sun-Earth connection and climate

Secondary objectives enabled by SODISM data discussed in this talk

Solar limb metrology (Sci.field.1)

- Radial profile of the limb
- Angular profile of the solar disc (asphericity and higher moments)
- Temporal evolution of the above

Helioseismology (Sci.fld.2)

- Helio-seismic diameter
- Solar intensity oscillations, and especially g-modes

Solar spectral irradiance (Sci.fld.3)

• Contribution to the reconstruction of the SSI (solar spectral irradiance)

Other solar physics studies (Sci.fld.4)

- Surface motions and their evolution
- Study of magnetic activity features
- YOUR IDEAS HERE! (Serendipity)

Solar-terrestrial relationships & aeronomy (Sci.fld.5)

- Space Weather
- Studies of the Earth atmosphere via occultations, albedo studies, etc.
- Contribution to understanding the Sun-Earth connection and climate

The astrophysical content of secondary SODISM observations

1. Content of *still* images

- a. The "featureless" non-magnetized photosphere
 - Its center-to-limb variation, latitudinal dependence, evolution, etc.
- b. Photospheric objects
 - Sunspots, faculae
- c. Chromospheric objects
 - Chromospheric network, plages

2. Content of image sequences

- a. Eventless
 - Torsional oscillations, meridional circulation, supergranular pattern
- b. Eventful
 - Solar: White-light flares, Moreton waves, eruption signatures, etc.
 - Non solar: eclipses by the moon, Earth occultations

A meek classification

The 5 dimensions of SODISM data analysis

Method

- Case study
- Statistics

Studied dependences

- Temporal (≠scales)
- Spatial (≠scales)
- Spectral

SODISM science investigations

Measurement

- Morphology
- Motion
- Radiometry

SODISM channel

- Photospheric
- Chromospheric

Primary target

- Eventless region
- Solar object
- Non solar event

Intensity as a function of *latitude*Gl suggestions #1

- -Long time scales
 -Large spatial scales
 Spectral dep.
- Radiative North-South asymmetry of the NUV-NIR sun
 - Livingston and Sheeley, ApJ (2008)
 - How uniform can a solar-like stellar disk be?
 - → Exoplanets research
 - Is magnetism the sole source of irradiance variation?
 - North-South asymmetry
 - In continuum and Fraunhofer lines from 313.4 nm to 4 688 nm
 - Non magnetic photosphere (solar minimum conditions, 2007)
 - 0.05% in the IR
 - 1% in the violet and UV
 - 15% in photospheric and chromospheric line cores
 - Faculae = probable source for the measured asymmetries
- Latitudinal variation of the photospheric intensity
 - Rast, Ortiz, and Meisner, ApJ (2008)
 - Baroclinicity expected for models to match differential rotation
 - Poles and equator regions few K warmer than mid-latitudes
 - Contrasts in the red [•] and in the blue [○] →
 - Non magnetic photosphere (outside faculae)
 - inside 0.3 < μ < 0.45
 - Contradicted by Livingston, Galayda, Milkey (2011)
- NB: benefit of eclipses

Latitudinal intensity

Radiometry

Evolution of the *supergranular pattern*Gl suggestions #2

- Meunier, Roudier, Rieutord, AA (2008)
 "Supergranules over the solar cycle"
- Williams, Pesnell, Sol. Phys. (2011)
 "Comparisons of supergranules characteristics during the Solar Minima of cycles 22-23 and 23-24"
- Supergranules observed by T. Roudier with SODISM
 - 535nm, 3min cadence
 - LCT technique
 - Cf. J.-M. Malherbe's talk

SODISM 535nm divergence field T. Roudier, April 2012

Chromospheric investigations Gl suggestions #3

- 215 nm
 - Uniqueness of such imaging observations
 - "terra incognita"
 - 1 lossless image per day
 - Synergies with PREMOS
- 393 nm
 - 11 (lossy) images per day!
 - Modeling Ca II K emission (<500km?) →
 - Proxy (tbc) for the *horizontal* magnetic field away from disc center
- Auchère et al, A&A 1998,
 "The prolate solar chromosphere"
 - ΔD ~ 2 arcsec in H-alpha
 - − $\Delta D \sim 10$ arcsec in He II →
 - $\Delta D \sim 10$ mas in the photospheric continuum
 - Dynamical vs. magnetic pressure interplay
 - ΔD at 215nm and 393nm ??
 - Cycle evolution?

SSI reconstruction GI suggestions #4

Sunspot Penumbra
Sunspot Umbra
Faculae
Plage
Active network
Quiet network
Intergranular Cells

- Segmentation based on intensity in 1 channel
 - use several, segment on morphology!
- Assign atmosphere (and spectrum) to segmented region
 - SRPM: Fontenla et al.
 - SolMod3D: Haberreiter et al (cosi & SRPM heritage)

White Light Flares GI suggestions #5

- Eruption, as seen by PREMOS 210 nm →
 - SODISM could observe such events
- 22:33 23:16 23:31 23:02 Veselovsky and Koutchmy (2009) Time of 9 March 2011 Scientific requirements for future spatially resolved white-light and broadband high-cadence observations of the Sun
- Martínez Oliveros et al (2011) Imaging Spectroscopy of a White-Light Solar Flare Eruption seen by SDO - HMI

4.925×10⁻⁴

4.910×10

23:45

Observation of the Sun occulted by the Earth atmosphere GI suggestions #6

GI suggestions #7: Venus transit of June 2012

Classification of expected hurdles

SODISM aptitudes and frailties

Weaknesses

- Unknown PSF
- Unexplained persistence
- Quasi all full disc images compressed lossily, what's more at x16 rate
- Few sequences of full frame images, none yet acquired at the max cadence of 1 minute
- Sparse exploration of the space of image acquisition parameters
 - E.g. fixed exposure time
- Ghost and scattered light
 - Difficult off-limb observations

Plusses

- 24h/7d operations
- Potentially frequent Z-axis rotation → large scale flatfield precision (if full frames)
- Uniqueness of the 215 nm channel
- Plurality and narrowness of the passbands
- Stability of the telescope body
- Relatively frequent solar eclipse observations
- Earth occulted observations in winter
- No technical impossibility for NRT (near real time) data delivery, but presently unavailable

Expected collaborations

- PREMOS filter radiometers
- Solar full-disc imaging monitors
 - PSPT, SOLIS, and other ground-based telescopes
 - SDO-HMI, SDO-AIA
- SOVAP and PREMOS TSI radiometers
- Others (SORCE SIM, PROBA2 LYRA, etc.)
- Join internationally coordinated observations
- Guest investigators!