Validation of SSI datasets

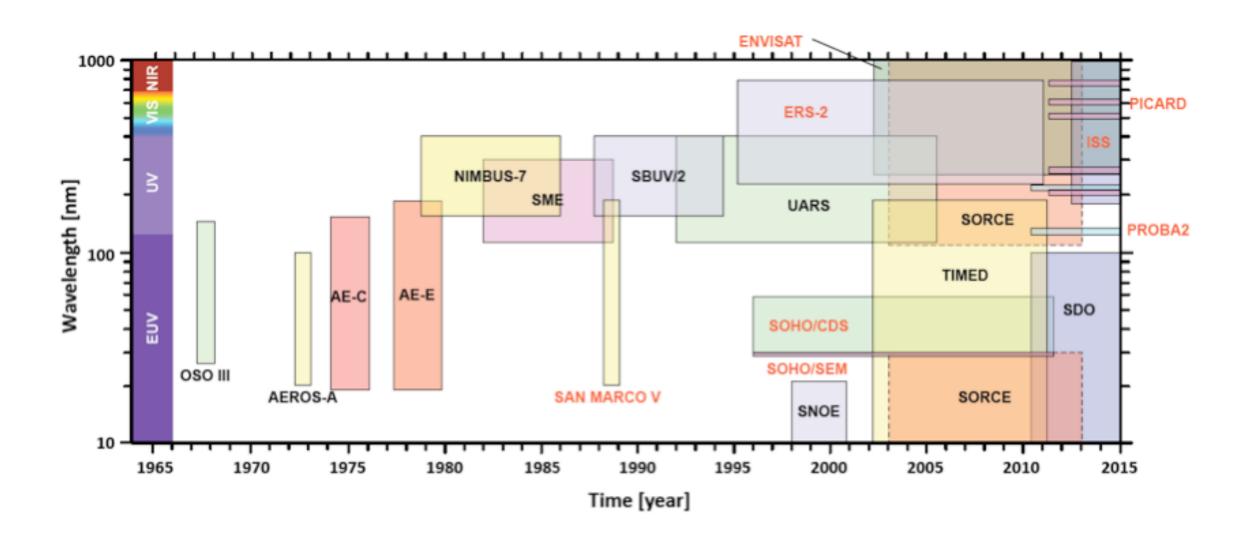
On the long term

Matthieu Kretzschmar

M. Schöll, T. Dudok de Wit LPC2E, CNRS & Université d'Orléans

matthieu.kretzschmar@cnrs-orleans.fr

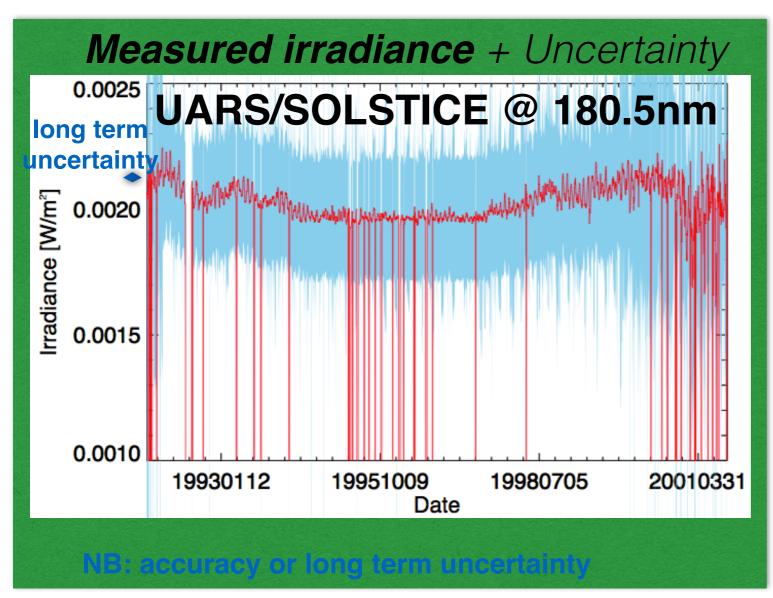
SSI Measurements



What are the uncertainties on these time series?

INSTRUMENT

On board monitoring system: degradation + others

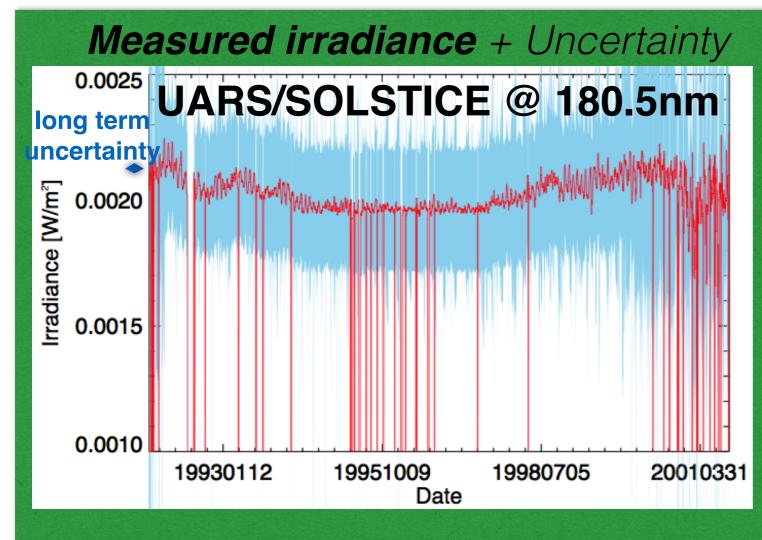


INSTRUMENT

On board monitoring system: degradation + others

Ground calibration & processing

Instrument team

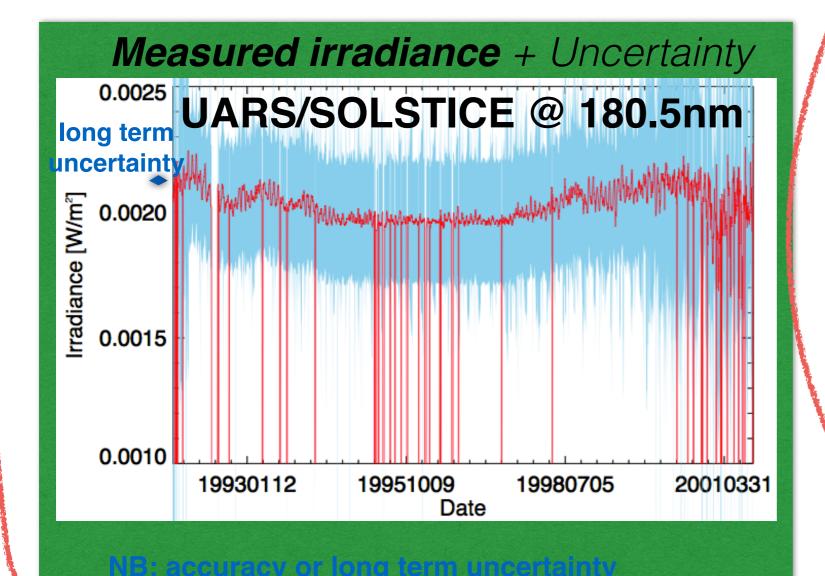


NB: accuracy or long term uncertainty

INSTRUMENT

On board monitoring system: degradation + others

Instrument team



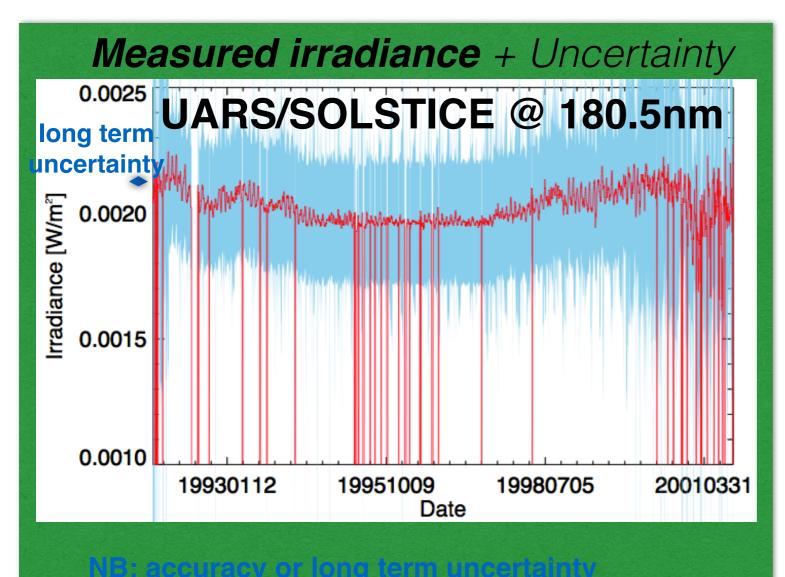
COMMUNITY

Analysis/Comparison with other instruments, models, solar proxies, and all (almost) you can imagine

INSTRUMENT

$$R(t_1, t_2) = \frac{I(t_2)}{I(t_1)} \quad U(R)$$
?

INSTRUMENT

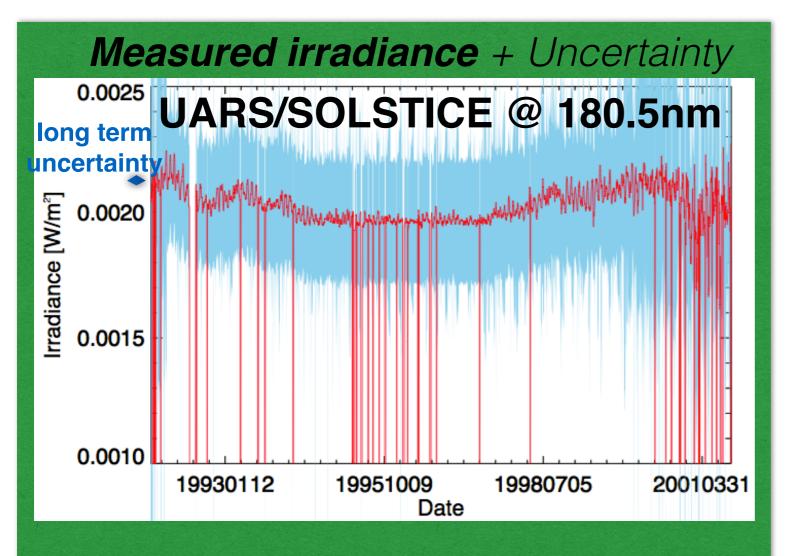


$$R(t_1, t_2) = \frac{I(t_2)}{I(t_1)}$$
 $U(R)$?

$$\frac{U(R)}{R} = \sqrt{\left(\frac{U(I(t_1))}{I(t_1)}\right)^2 + \left(\frac{U(I(t_1))}{I(t_1)}\right)^2}$$

INSTRUMENT

On board monitoring system: degradation + others



NB: accuracy or long term uncertainty

$$R(t_1, t_2) = \frac{I(t_2)}{I(t_1)}$$
 $U(R)$?

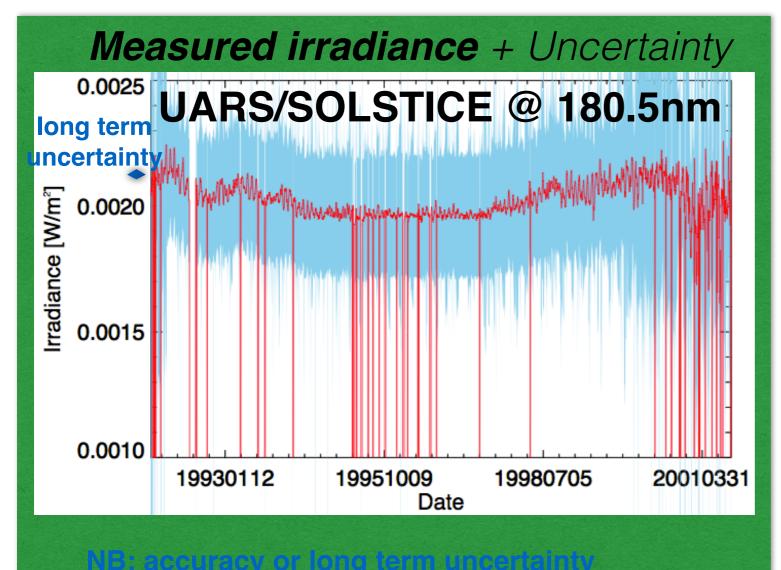
$$\frac{U(R)}{R} = \sqrt{\left(\frac{U(I(t_1))}{I(t_1)}\right)^2 + \left(\frac{U(I(t_1))}{I(t_1)}\right)^2}$$

$$\frac{U(R(t_1, t_2))}{R(t_1, t_2)} = \int_{t_1}^{t_2} LTU(t)dt$$
$$\approx LTU \times (t_2 - t_1)$$

INSTRUMENT

Ground calibration & processing

On board monitoring system: degradation + others



$$R(t_1, t_2) = \frac{I(t_2)}{I(t_1)} \quad U(R)$$
?

$$\frac{U(R)}{R} = \sqrt{\left(\frac{U(I(t_1))}{I(t_1)}\right)^2 + \left(\frac{U(I(t_1))}{I(t_1)}\right)^2}$$

$$\frac{U(R(t_1, t_2))}{R(t_1, t_2)} = \int_{t_1}^{t_2} LTU(t)dt$$
$$\approx LTU \times (t_2 - t_1)$$

Ideally,

LTU is in % (or ppm) / year LTU is time dependent

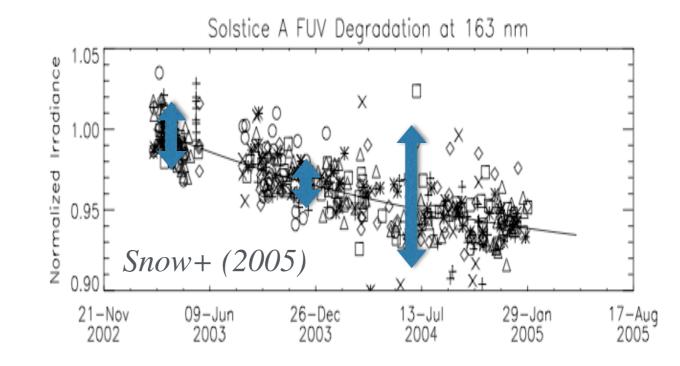
Long term uncertainty

$$I^{meas}(t) = I^{true}(t)g(t)$$

 $LTU \approx U(g(t))$

(but not only)

- It is usually difficult from the instrument to give timedependent long term accuracy.
- Old datasets (SME?) has no LTU.
- Some have no independent LTU (SBUV)



→ <u>Aim</u>: homogeneous assessment of long term uncertainties of all datasets

Validation / Comparison

What to compare with?

- → Other data
- Existing models (proxy based or semi empirical)
- → proxies

Validation / Comparison

What to compare with?

- → Other data
- → Existing models (proxy based or semi empirical)
- → proxies

Hyp. 1: proxies can reproduce ssi variations to a certain degree

Validation / Comparison

What to compare with?

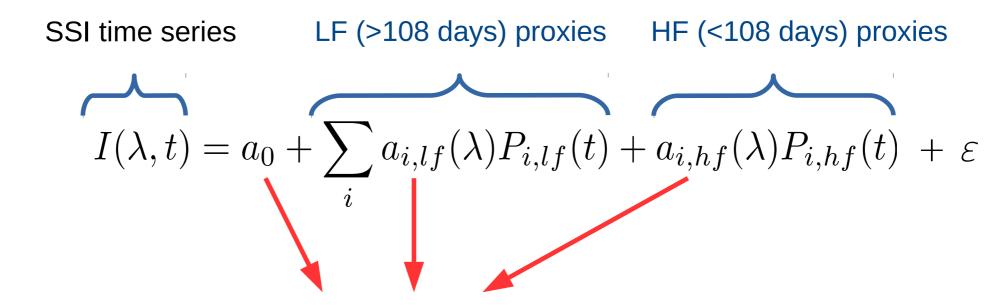
- → Other data
- Existing models (proxy based or semi empirical)
- → proxies

Hyp. 1: proxies can reproduce ssi variations to a certain degree

Method?

The less restrictive The more permissive

 Each spectral time series of each datasets is fitted with a two time scale linear component model

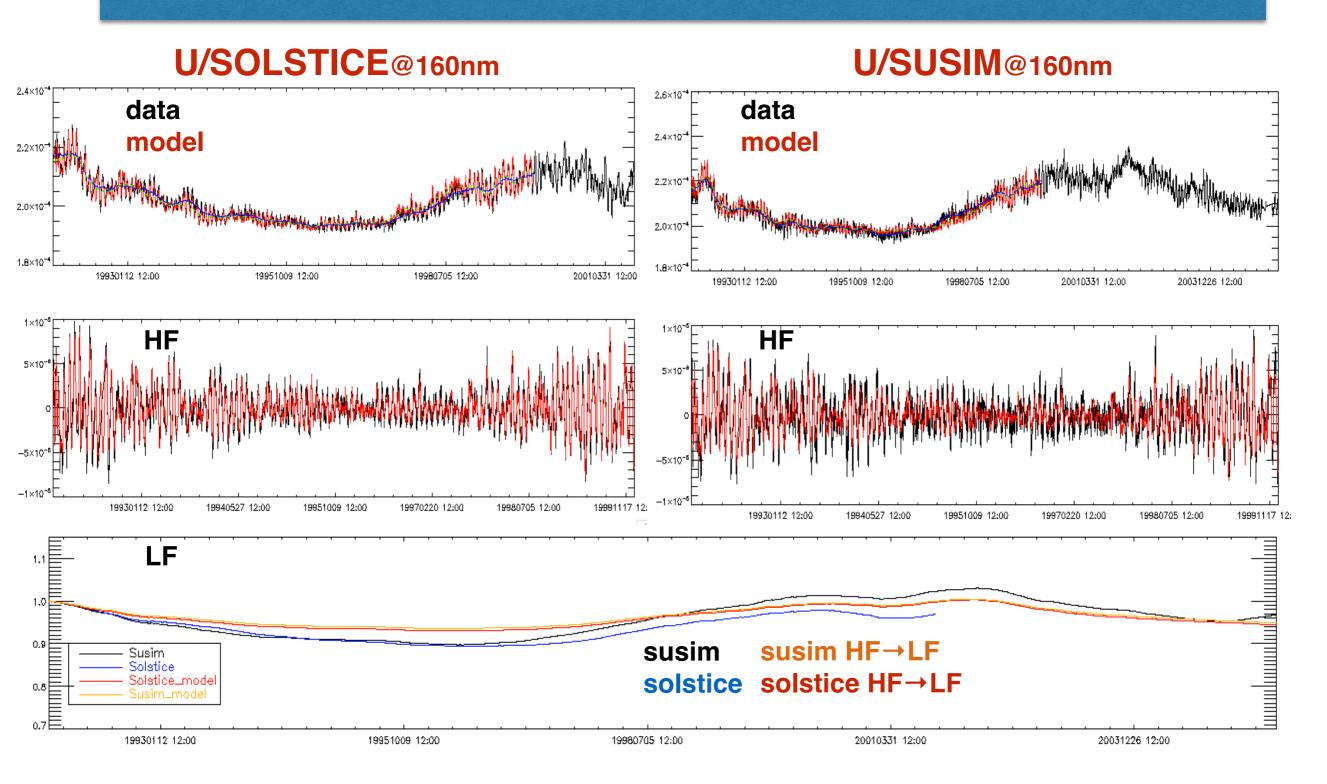


best model coefficients (lsq sense) determined for each λ

Used proxies:

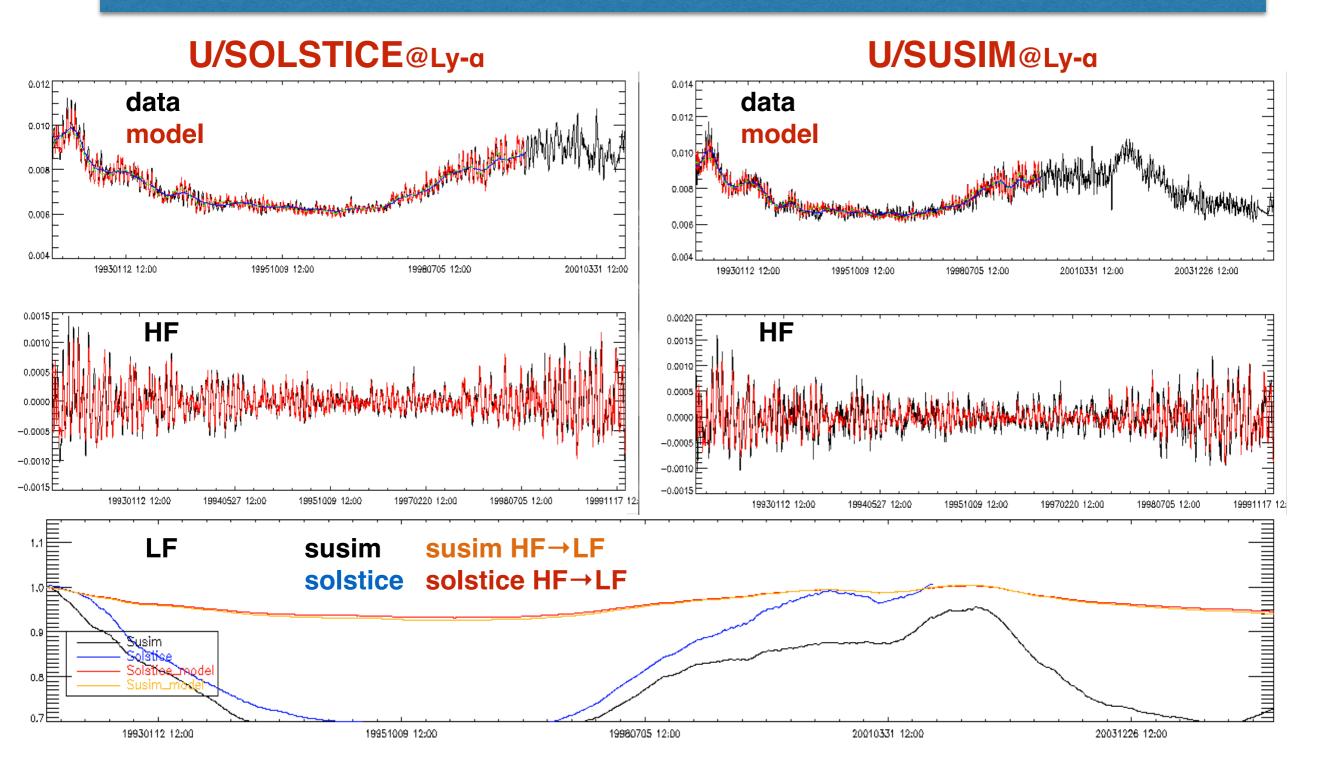
DSA, Mg II, and radio fluxes at 3.2cm, 10.7cm, 15cm, 30cm.

Why two time-scales?



Rotation amplitudes underestimates the cycle variations

Why two time-scales?

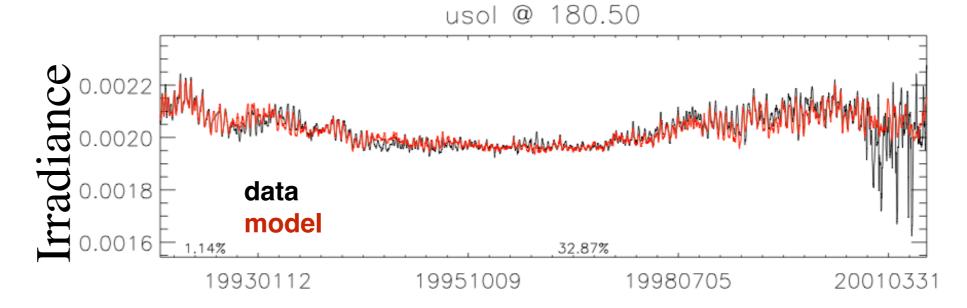


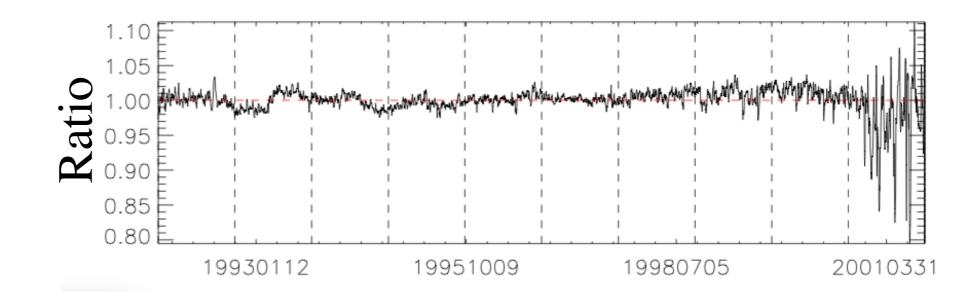
Rotation amplitudes underestimates the cycle variations

LTU: How does it work?

Example: UARS/Solstice @180.5nm

Very good agreement



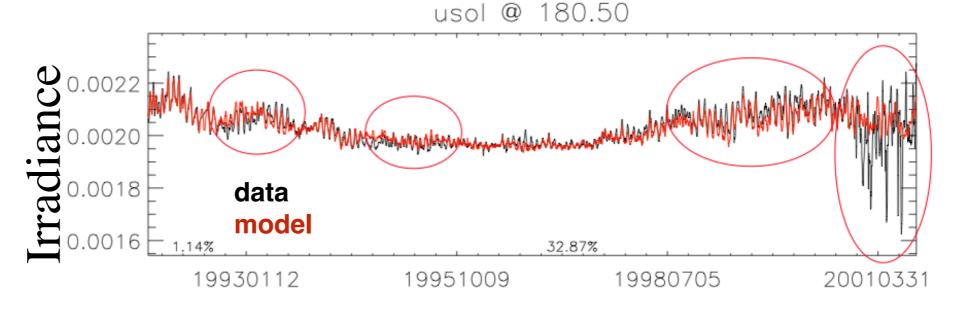


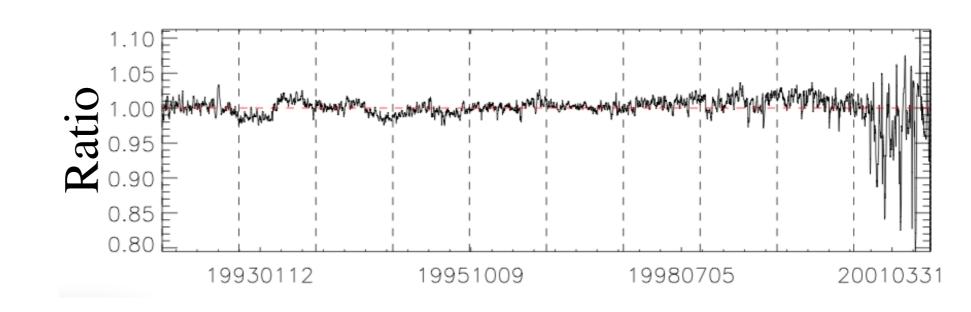
How does it work?

Example: UARS/Solstice @180.5nm

 Very good agreement

 Except at some time of the mission





Long term uncertainty?

How does it work?

Example: UARS/Solstice @180.5nm

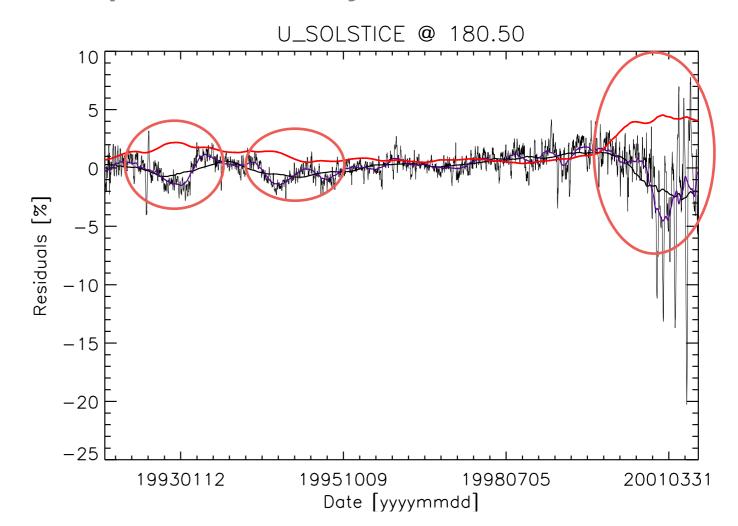
U(λ,t): average disagreement in the yearly slope of the observed and modeled SSI

$$U(\lambda, t) = \operatorname{smooth}_{1-yr} (\|a_{obs}(\lambda, t) - a_{model}(\lambda, t)\|)$$

with $a(\lambda,t)$: normalized slope of the time series computed over one year

 Uncertainty is about 0.5%/yr except where disagreement improves

Snow+ (2010) estimated
 0.5% / yr



How does it work?

Hyp. 2:

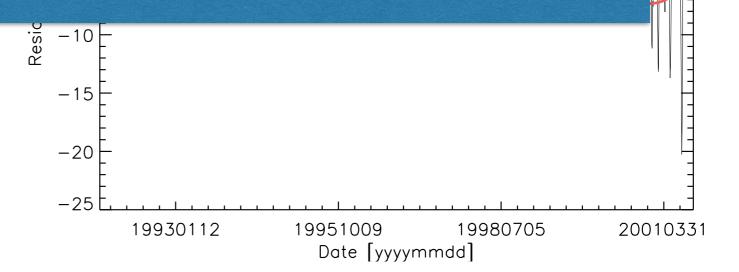
What can not be reproduced by the two time scales proxy-model is more uncertain.

cons: this multi parameter model can reproduce trends and non solar behavior to a certain degree. It is permissive.

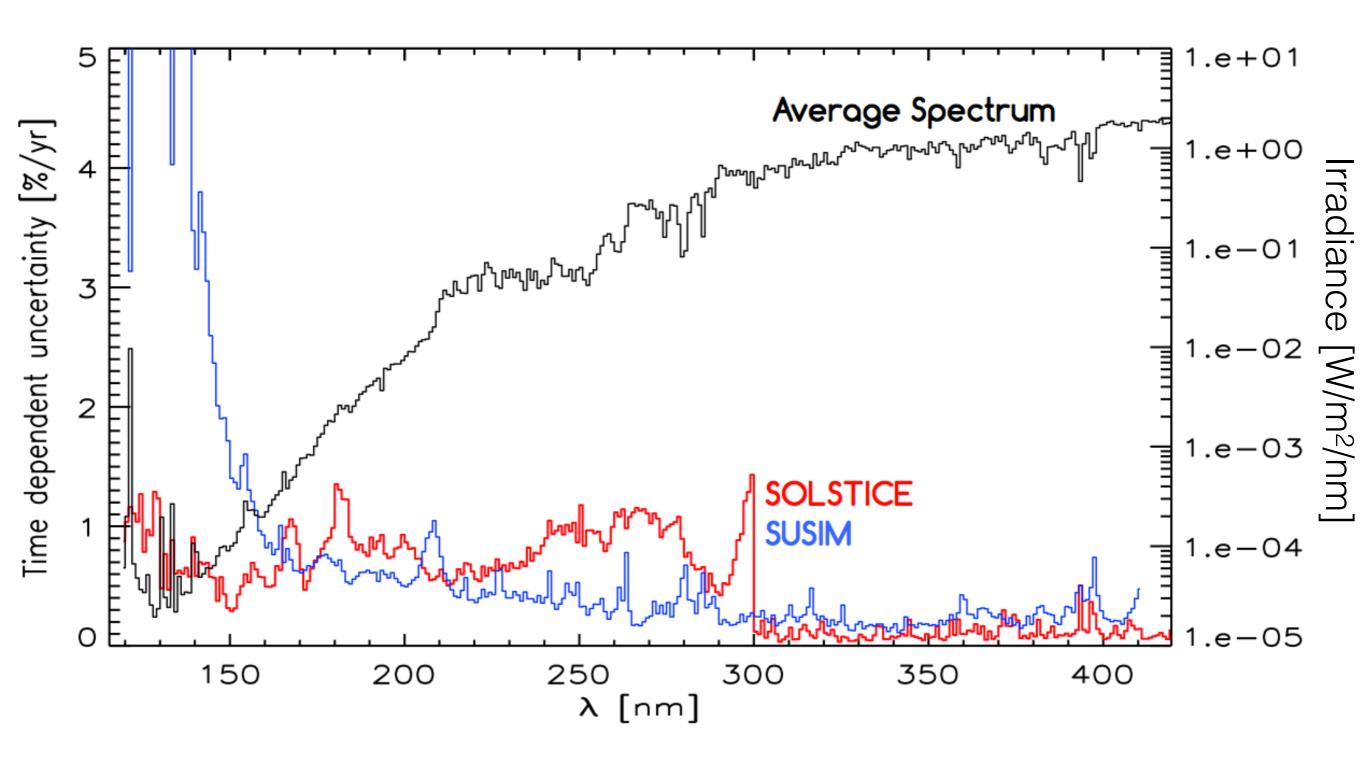
• Unce 0.5% wher

improves

 Snow+ 2010 estimated 0.5% / yr



UARS Overview



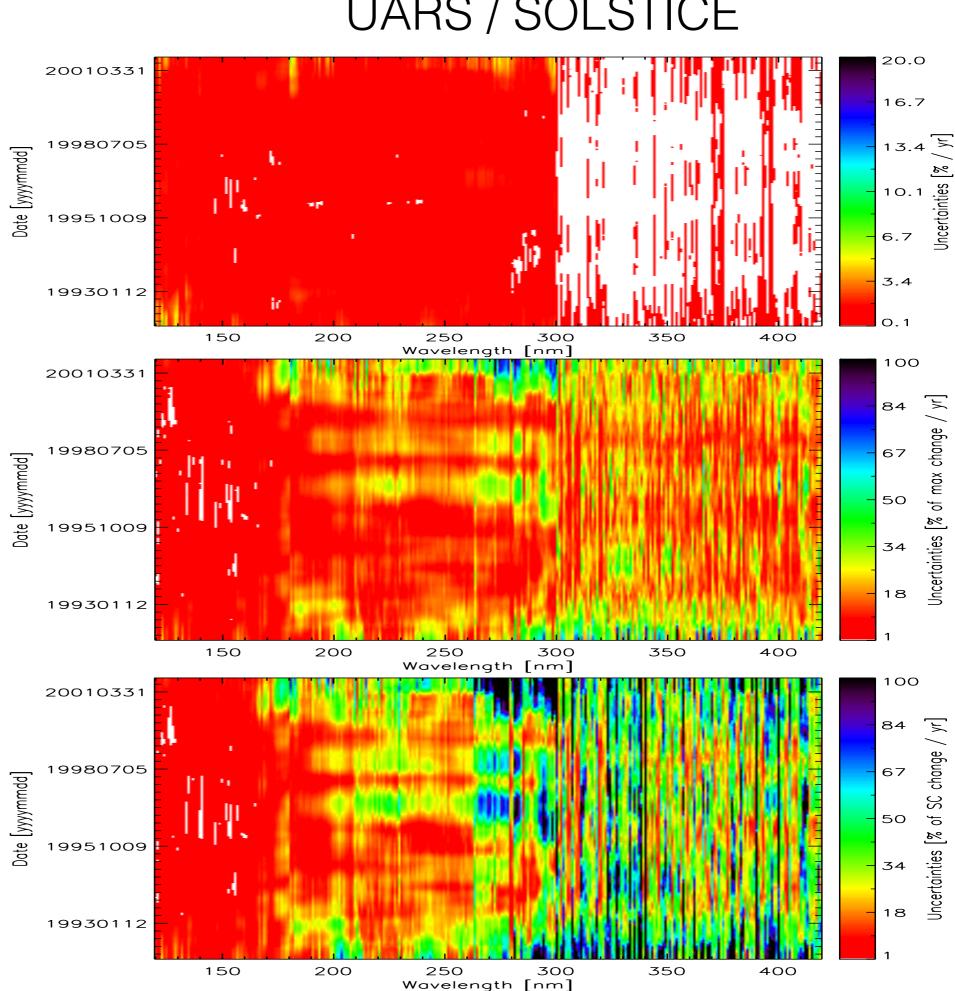
The time dependent LTU are averaged over the mission lifetime

UARS / SOLSTICE

• LTU in % / yr

• LTU in % of maximum variation / yr

 LTU in % of solar cycle variation / yr



UARS / SUSIM

20.0

16.7

0.1 Fig. 7.0 Purcertainties 6% /

Uncertainties [% of SC change / yr

3.4

• LTU in % / yr

Date [yyyymmdd]

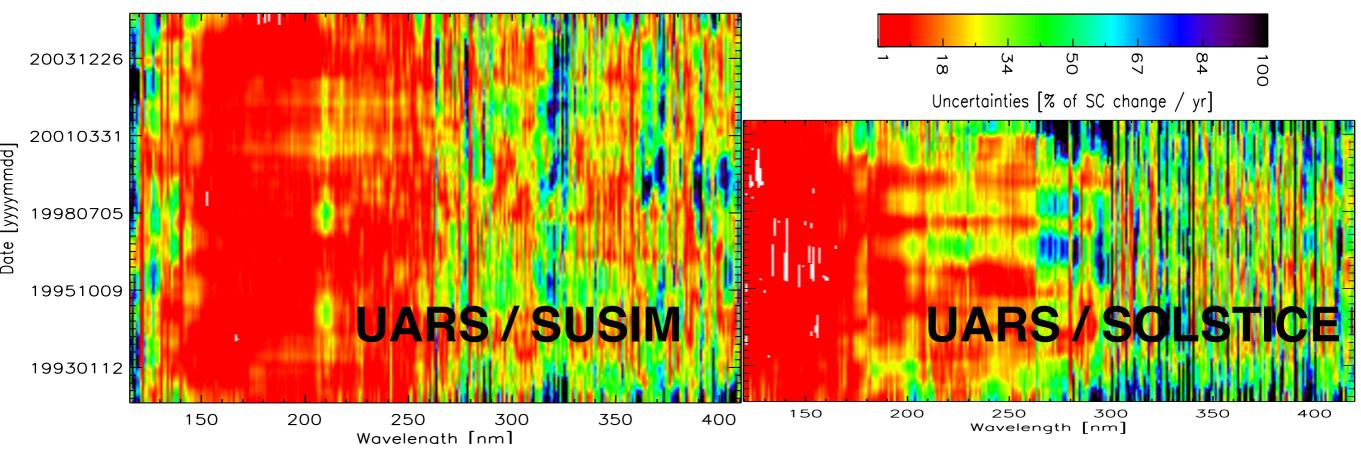
 LTU in % of maximum variation / yr

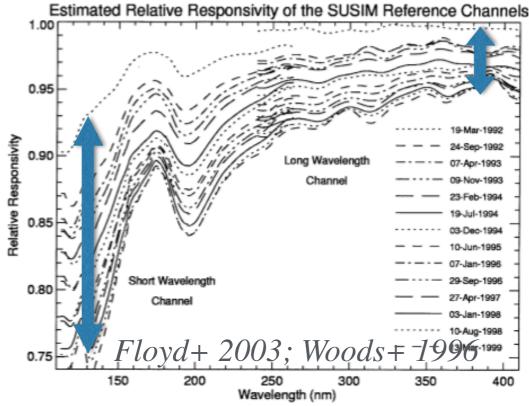
250 300 Wavelength [nm] Date [yyyymmdd] Wavelength [nm]

Wavelength [nm]

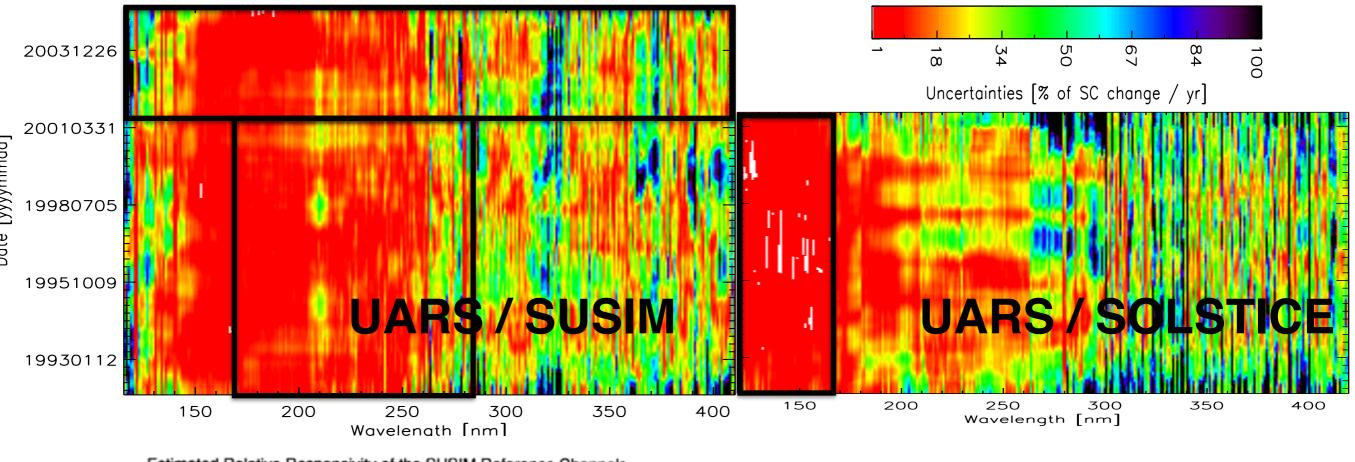
 LTU in % of solar cycle variation / yr

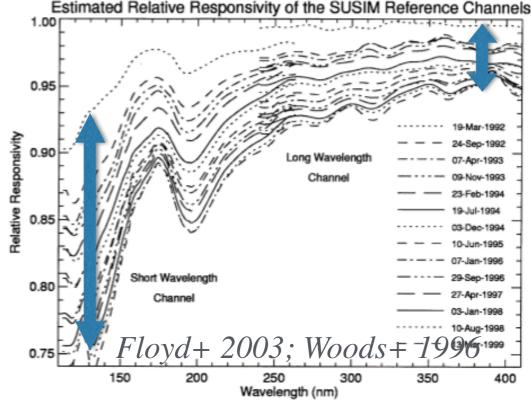
U_SUSIM vs U_SOSLTICE





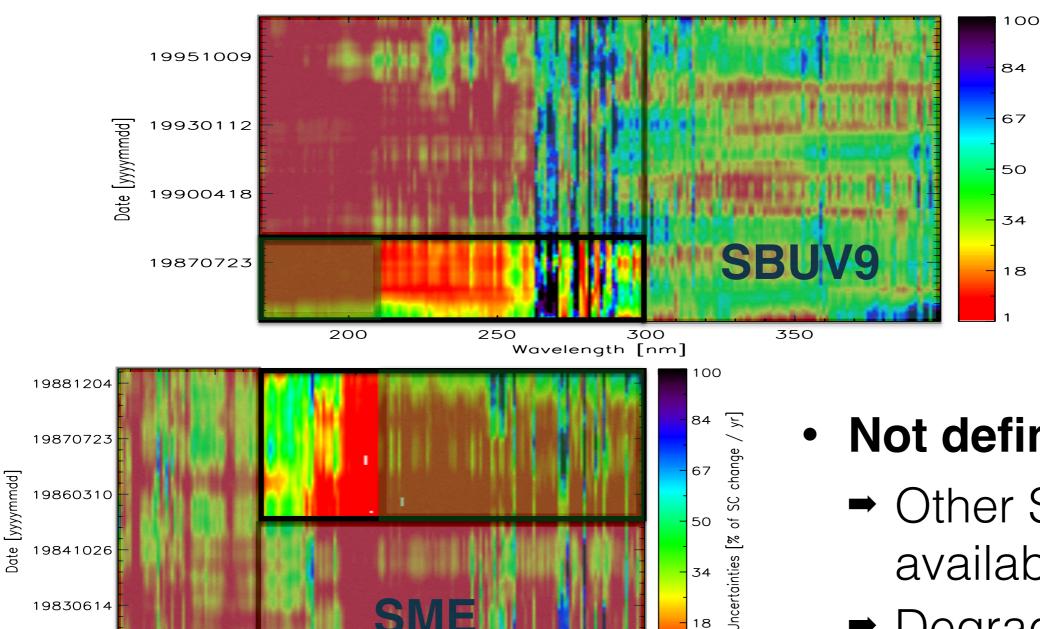
U_SUSIM vs U_SOSLTICE





SME & SBUV9

300



250

19820130

150

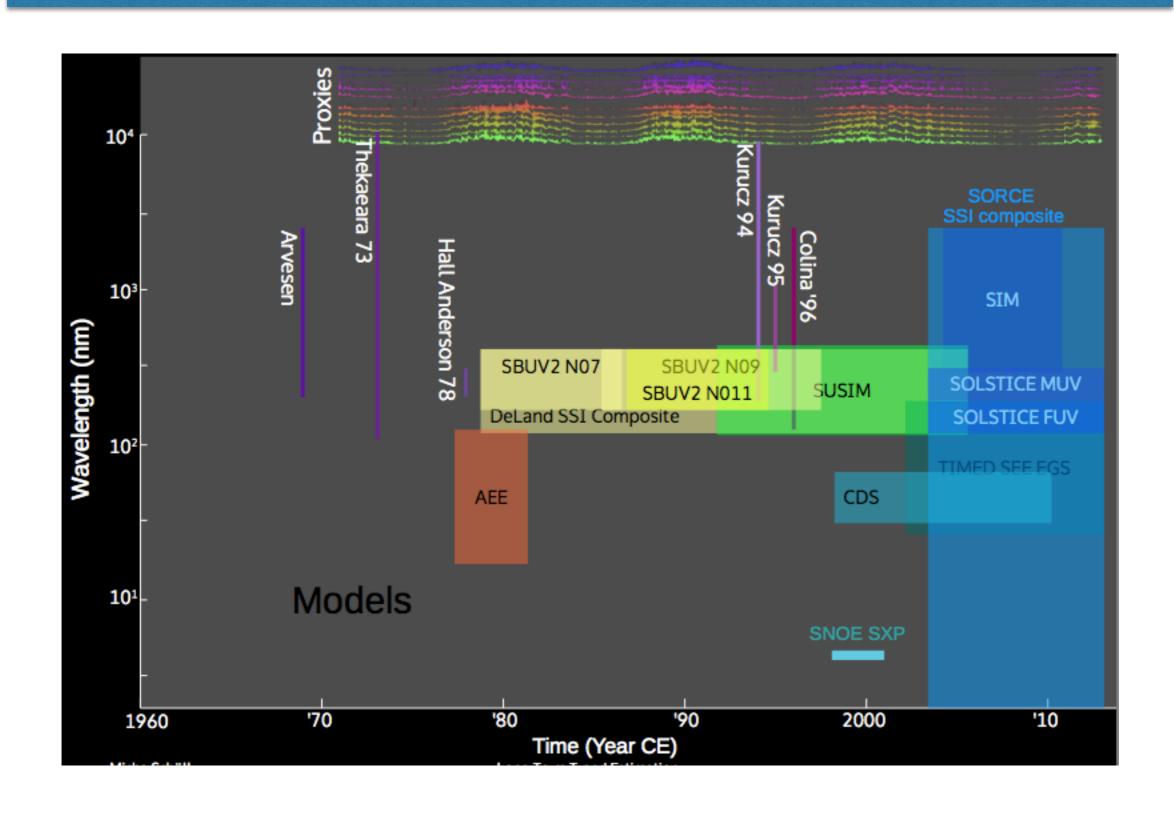
200

Wavelength [nm]

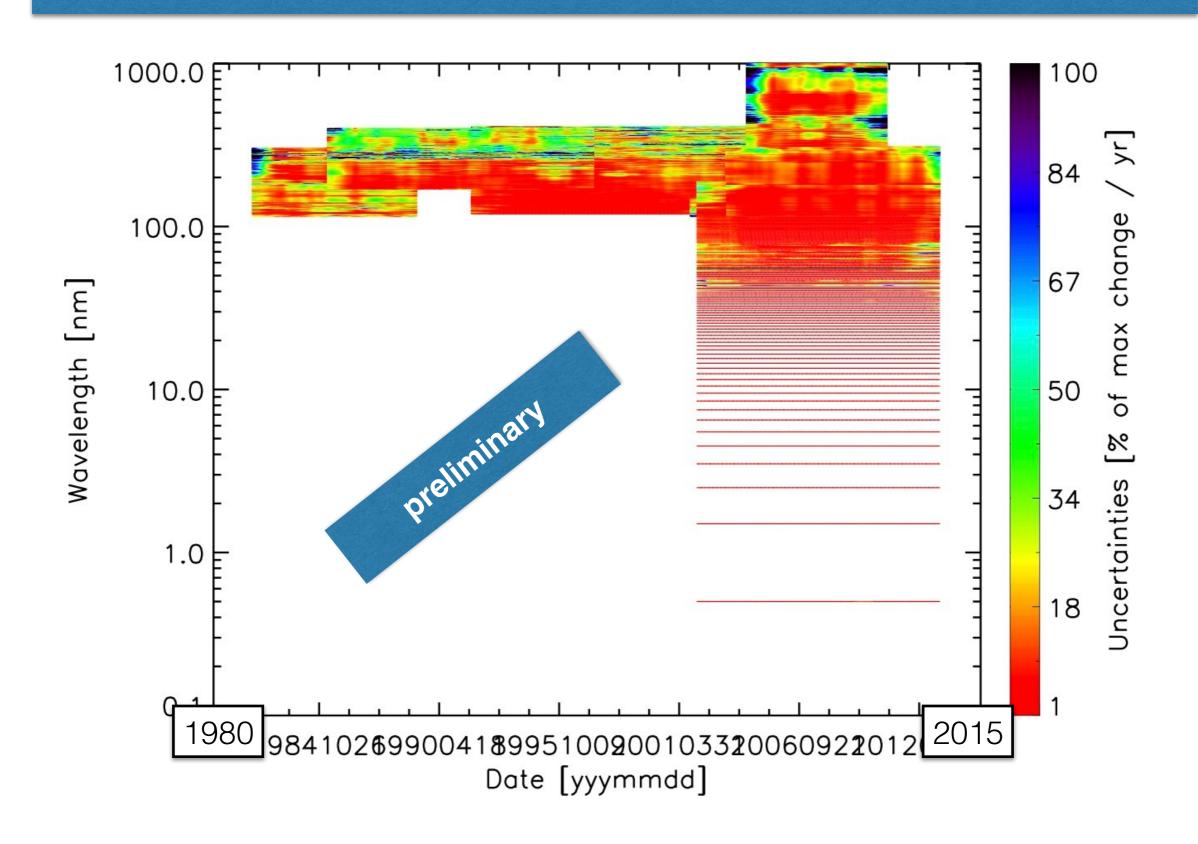
Not definitive:

- → Other SBUV data available.
- Degradation of SBUV's response corrected using proxies...

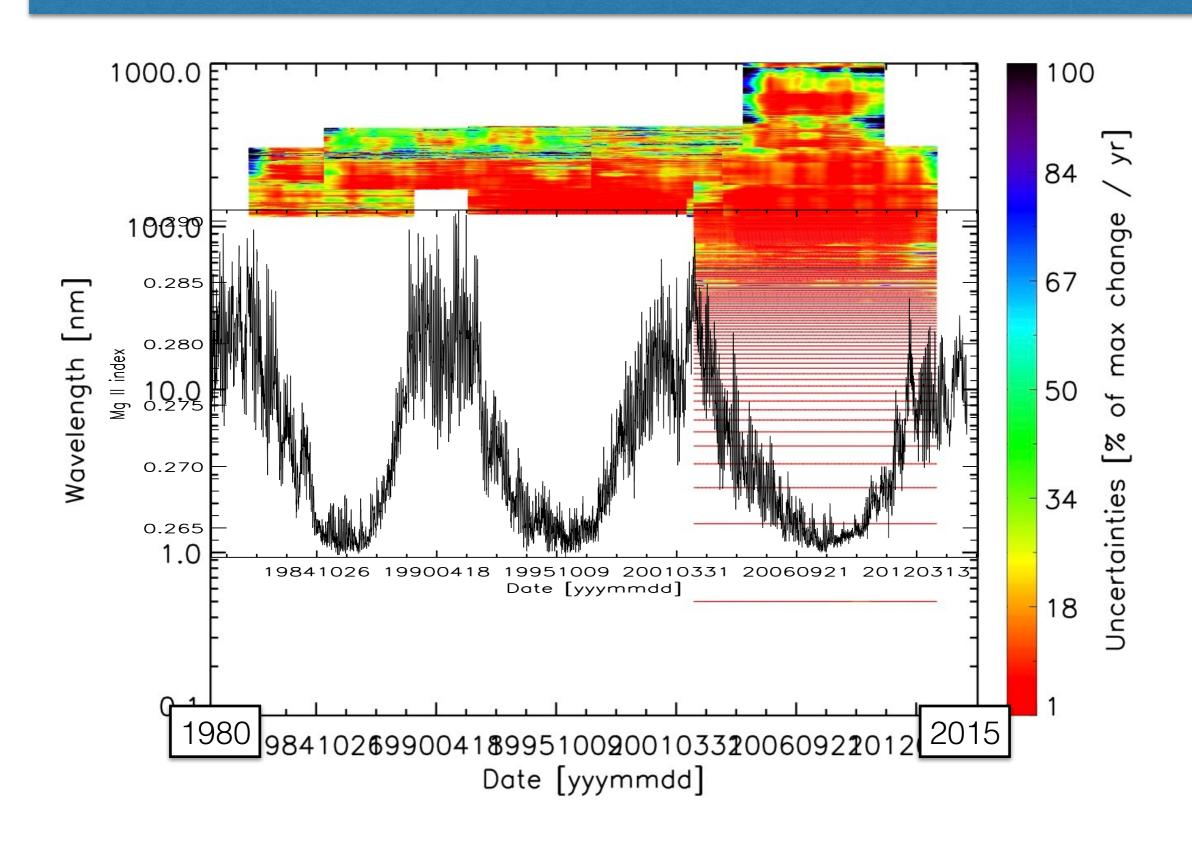
General Overview



General Overview



General Overview

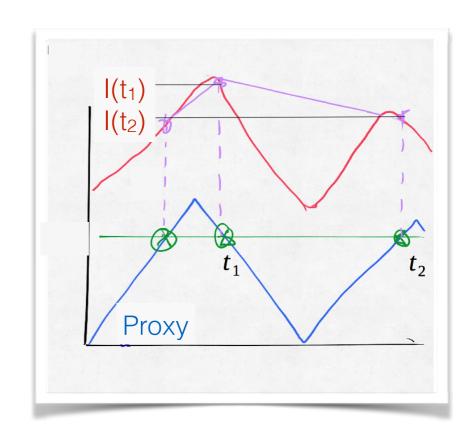


The less permissive

- Unfortunately there is residual degradation in the observed values $I^{meas}(t) = I^{true}(t)g(t)$
- Assume an unknown but exact proxy model:

$$I^{true}(t) = f(p(t)) + \chi$$

$$p(t_1) = p(t_2) \rightarrow I^{true}(t1) = I^{true}(t2) + \chi$$



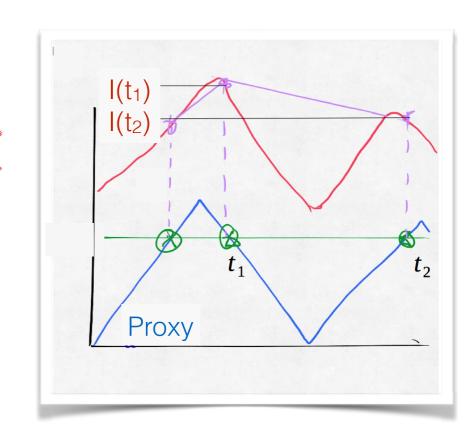
The less permissive

- Unfortunately there is residual degradation in the observed values $I^{meas}(t) = I^{true}(t)g(t)$
- Assume an unknown but exact proxy model:

$$I^{true}(t) = f(p(t)) + \chi$$

 $p(t_1) = p(t_2) \rightarrow I^{true}(t1) = I^{true}(t2) + \chi$

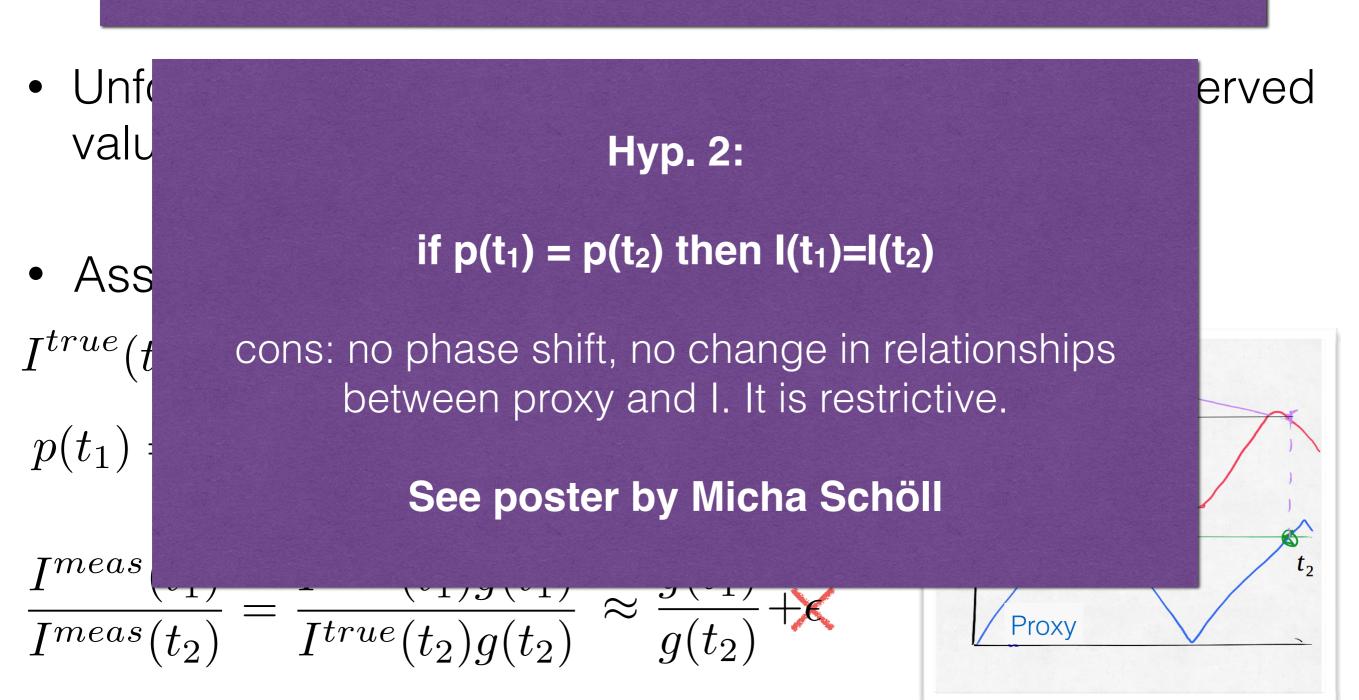
$$\frac{I^{meas}(t_1)}{I^{meas}(t_2)} = \frac{I^{true}(t_1)g(t_1)}{I^{true}(t_2)g(t_2)} \approx \frac{g(t_1)}{g(t_2)} +$$



$$g(t) = a_0 + a_1 t + a_2 t^2 + \dots$$

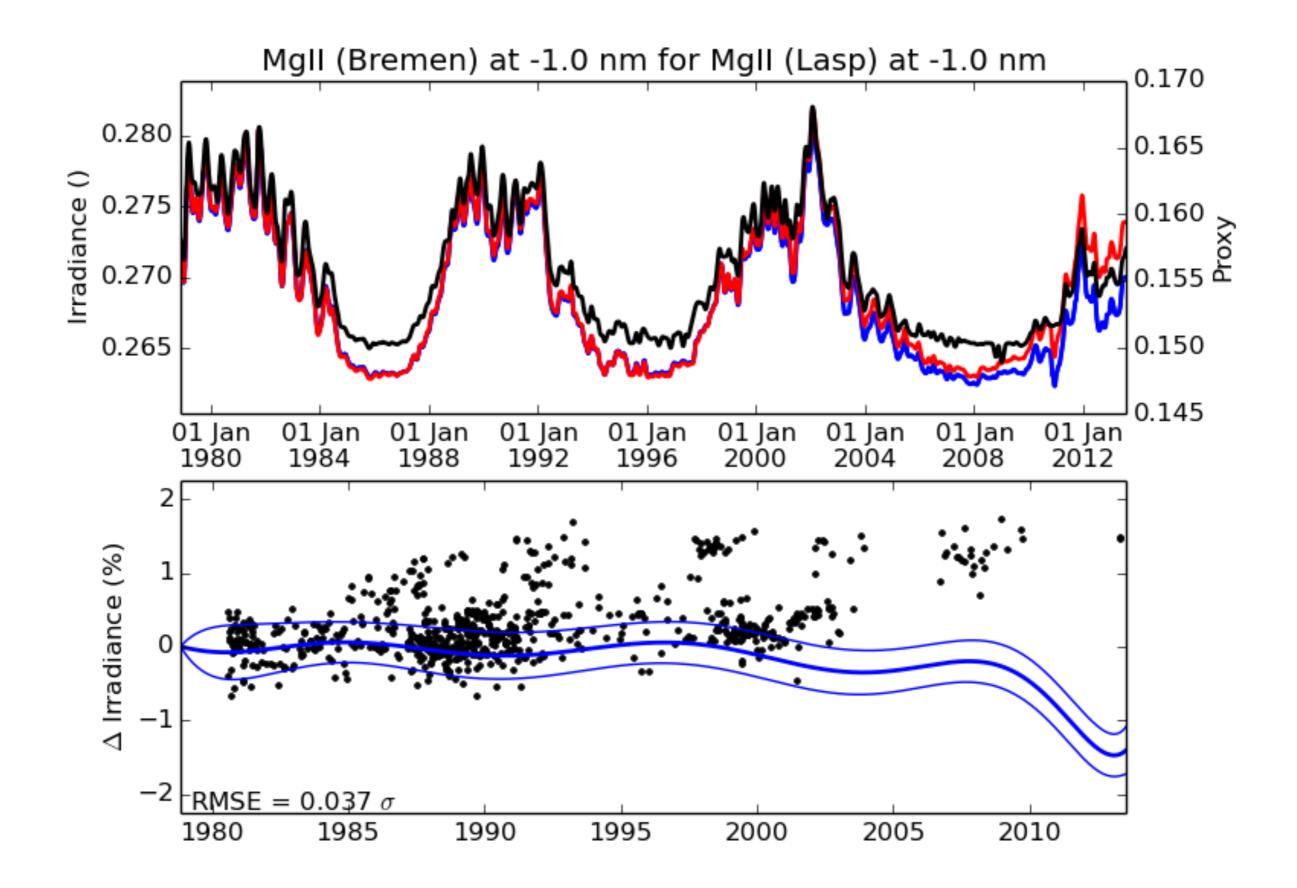
 $g(t = 0) = 1$

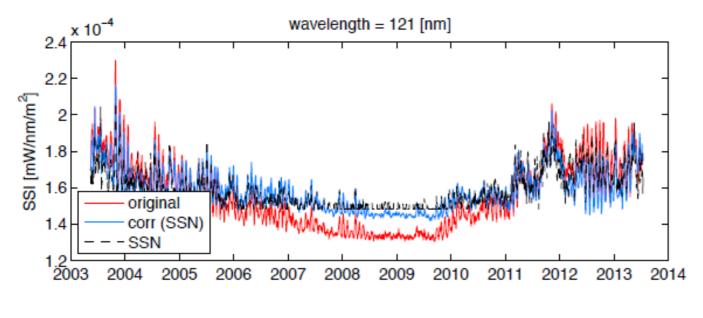
The less permissive

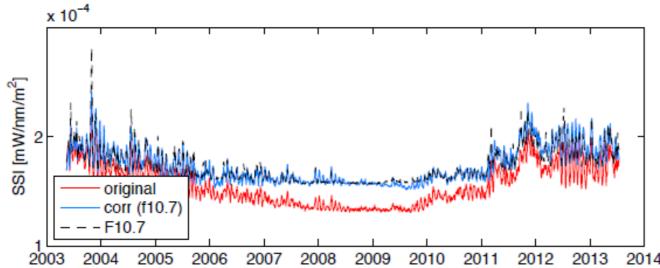


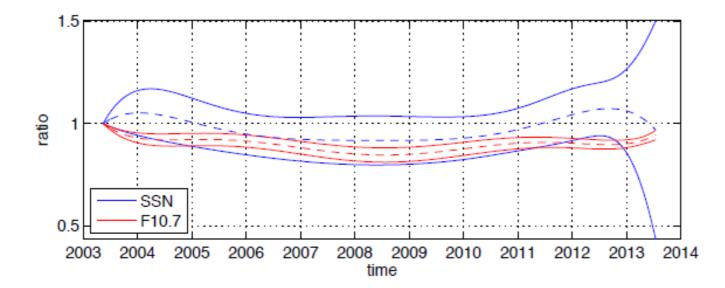
$$g(t) = a_0 + a_1 t + a_2 t^2 + \dots$$

 $g(t = 0) = 1$



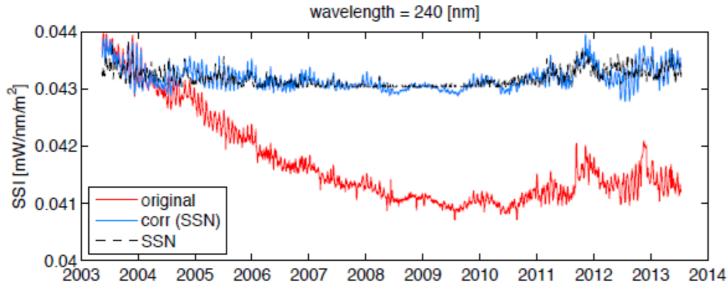






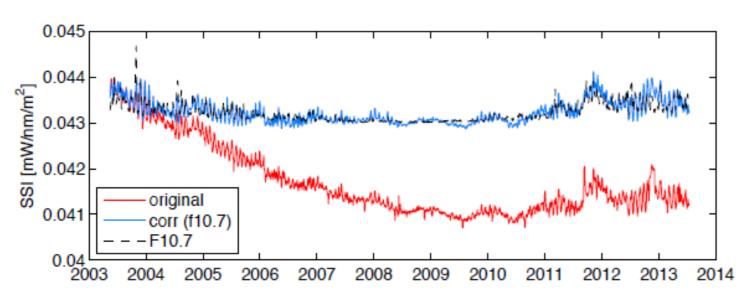
SOLSTICE Trend correction for Ly-a (121 nm)

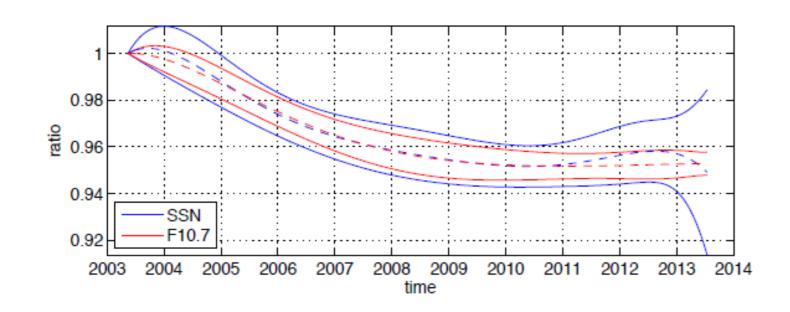
Using SSN and F10.7 as equal activity indicators (EQA)



SOLSTICE Trend correction for 240 nm

Using SSN and F10.7 as equal activity indicators (EQA)





Conclusions

- Long term uncertainties is essential. Should be time dependent
- Two time-scale proxy model:
 - → simple and robust. Time dependent.
 - → give value in agreement with instrumental value.
 - → permissive
- « if $p(t_1) = p(t_2)$ then $I(t_1)=I(t_2)$ » method
 - → strong assumptions
 - → give results in agreement to « what is expected »

THANK

YOU