

Institut de recherche pour le développement

Cosmogenic isotopes as proxies for the solar activity

Edouard BARD & Mélanie BARONI

CEREGE, Aix-en-Provence

¹⁴C production and decay

cosmic

radiation

Geo- and helio-magnetic fields modulate the arrival of protons from galactic cosmic rays

> Cascade of particle reactions in the atmosphere (air shower)

Anti-correlation between the solar activity and the cosmic-ray flux measured by neutron monitors

Usoskin 2013 Liv. Rev. Solar Phys.

Geo- and heliomagnetic modulation

geomagnetic latitude

Production (¹⁰Be) as a function of altitude, the solar modulation potential ⊕ and the intensity of the geomagnetic dipole M/M_o

Studying the solar activity with cosmogenic nuclides from various "geological" archives"

¹⁴C & ¹⁰Be in marine sediments

¹⁴C in subfossil wood

¹⁴C in corals

¹⁰Be & ³⁶Cl in polar ice

¹⁴C in stalagmites

¹⁴C & ¹⁰Be by accelerator mass spectrometry in Aix-en-Provence

ASTERisques

The most recent ¹⁴C calibration curve prepared by the IntCal group: IntCal13 after 09, 04, 98, 93

Radiocarbon

toria chiefe des a chiefermanie et

Volume in Open Access http://www.radiocarbon.org

RADIOCARBON, Vol 55, Nr 4, 2013, p 1869-1887

© 2013 by the Arizona Board of Regents on behalf of the University of Arizona

INTCAL13 AND MARINE13 RADIOCARBON AGE CALIBRATION CURVES 0–50,000 YEARS CAL BP

Paula J Reimer^{1,2} • Edouard Bard³ • Alex Bayliss⁴ • J Warren Beck⁵ • Paul G Blackwell⁶ • Christopher Bronk Ramsey⁷ • Caitlin E Buck⁶ • Hai Cheng^{8,9‡} • R Lawrence Edwards⁸ • Michael Friedrich^{10,11} • Pieter M Grootes¹² • Thomas P Guilderson^{13,14} • Haflidi Haflidason^{15†} • Irka Hajdas¹⁶ • Christine Hatté^{17†} • Timothy J Heaton⁶ • Dirk L Hoffmann^{18‡} • Alan G Hogg¹⁹ • Konrad A Hughen²⁰ • K Felix Kaiser^{21,22*} • Bernd Kromer¹¹ • Sturt W Manning²³ • Mu Niu⁶ • Ron W Reimer¹ • David A Richards²⁴ • E Marian Scott^{25†} • John R Southon²⁶ • Richard A Staff^{7‡} • Christian S M Turney²⁷ • Johannes van der Plicht^{28,29}

Atmospheric ¹⁴CO₂ molecules diffuse in the other reservoirs of the carbon cycle

Comparing ¹⁴C and ¹⁰Be records requires the use of numerical models of various complexity

Bomb tests in the early 60s provide us with the impulse response function

Hua & Barbetti 2004 Radiocarbon

The bomb ¹⁴C has diffused into other reservoirs of the carbon cycle, e.g. the ocean

Grottoli & Eakin 2007 Earth Sci. Rev.

Jenkins et al. 2010 Radiocarbon

Crightal tasks?

name brain probin

¹⁰Be measured in ice cores from Antarctica

> Barkne Island

Dome Yuj

Vosh

EPICA DC

TALDICE

South Pole

EPECA DAL

Ross Sea

¹⁰Be in ice cores from Antarctica and ¹⁴C in tree-rings (all converted in ¹⁴C units)

Bard et al. 1997 EPSL, 2000 Tellus, Horiuchi et al. 2008 QG, Delaygue & Bard 2011 Clim. Dyn.

¹⁰Be records from Greenland and Antarctica (GRIP and EDML)

Steinhilber et al. 2012 PNAS

Extracting the solar activity from the IntCal ¹⁴C curve

Stuiver et al. 1998 Radiocarbon as plotted by Solanki et al. 2004 Nature

Sunspot number reconstruction over the Holocene

Solanki et al. 2004 Nature

Sensitivity to the geomagnetic records

-6000

-8000

-4000

Years (-BC/AD)

-2000

2000

Usoskin et al. 2006 GRL, 2007 A&A

An unexpected and mysterious result in Δ^{14} C records with annual resolution

240 | NATURE | VOL 486 | 14 JUNE 2012

A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan

Fusa Miyake¹, Kentaro Nagaya¹, Kimiaki Masuda¹ & Toshio Nakamura²

LETTER

doi:10.1038/nature11123

The spike has been replicated in trees from Germany, California, Siberia and New-Zealand

Carbon cycle box modeling shows it is compatible with an increase of 15-20 kg of ¹⁴C ≈ 2-3 times the average yearly production by GCR

Another spike (10 ‰) detected around 994 AD

Miyake et al. 2013 Nat. Comm.

Previously detected in a ¹⁰Be record from Antarctica but at low resolution

The spike is too rapid and too large for the solar modulation of galactic cosmic rays, hence: ➤ Supernova (but no other evidence), ➤ Strong solar energetic particle (SEP) event

Many thanks for listening

C Sigurður H. Stefnisson